
CSCI3160: Regular Exercise Set 9

Prepared by Yufei Tao

Problem 1*. Prove the correctness of Dijkstra’s algorithm (when the edges have non-negative
weights).

Solution. We argue that, every time a vertex v is removed from S, we must have dist(v) = spdist(v).
We will do so by induction on the order that the vertices are removed. The base step, which
corresponds to removing the source vertex s, is obviously correct. Next, assuming correctness on all
the vertices already removed, we will prove the statement on the vertex v removed next.

Let π be an arbitrary shortest path from s to v. Identify the last vertex u on π such that
spdist(u) = spdist(v). In other words, all the edges on π between u and v have weight 0. Let π′ be
the prefix of π that ends at u. Note that π′ must be a shortest path from s to u.
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Claim 1: When v is to be removed from S, all the vertices on π′ — except possibly u —
must have been removed from S.

Proof of Claim 1: Suppose that the claim is not true. Define vbad as the first vertex on π′

that is still in S when v is to be removed from S. Let vgood be the vertex right before vbad on
π; note that vgood definitely exists because vbad cannot be s. By how u is defined, we must have
spdist(vbad) < spdist(u) = spdist(v).

s

u

π′
vbad

vgood

By our inductive assumption, when vgood was removed from S, we had dist(vgood) = spdist(vgood).
We must have relaxed the edge (vgood, vbad), after which we must have

dist(vbad) = dist(vgood) + w(vgood, vbad)

= spdist(vgood) + w(vgood, vbad) = spdist(vbad).

The value dist(vbad) never increases during the algorithm. Hence, when v is to be removed from S,
we must have dist(vbad) = spdist(vbad) < spdist(u) = spdist(v) ≤ dist(v) . But this contradicts the
fact that v has the smallest dist-value among all the vertices still in S.

Consider the moment when v is to be removed from S; define z as the first vertex on π that has
not been removed from S. Note that z is well defined because v itself is still in S at this moment.
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Claim 2: When v is to be removed from S, dist(z) = spdist(z).

Proof of Claim 2: Let z′ be the vertex right before z on π. Note that z′ is well defined because
z cannot be earlier than u on π (Claim 1) and z cannot be s.

By our inductive assumption, when z′ was removed from S, we had dist(z′) = spdist(z′). We
must have relaxed the edge (z′, z), after which we must have

dist(z) = dist(z′) + w(z′, z) = spdist(z′) = spdist(z).

It now follows that, when v is to be removed from S, we have dist(v) ≤ dist(z) = spdist(z) =
spdist(v). As dist(v) cannot be larger than spdist(v), we must have dist(v) = spdist(v).

Problem 2. Consider again your proof for Problem 1. Point out the place that requires edge
weights to be non-negative.

Solution. We used this assumption in the proof of Claim 1: look for the sentence: “By how u is
defined, we must have spdist(vbad) < spdist(u) = spdist(v)”.

Problem 3* (SSSP in a DAG). Consider a simple acyclic directed graph G = (V,E) where each
edge e ∈ E has an arbitrary weight w(e) (which can be negative). Solve the SSSP problem on G in
O(|V |+ |E|) time.

Solution. Let s be the source vertex. For each vertex v ∈ V , define spdist(v) as the shortest path
length from s to v. Also, define IN(v) as the set of in-neighbors of v. Observe that:

spdist(v) =


0 if v = s

∞ if IN(v) = ∅
minu∈IN(v)(spdist(u) + w(u, v)) if v ̸= s and IN(v) ̸= ∅

We can compute spdist(v) in O(|V |+ |E|) time based on a topological order of V , which can also
be obtained in O(|V |+ |E|) time (see Prof. Tao’s CSCI2100 homepage). The shortest path tree of s
can then be obtained using the piggyback technique without increasing the time complexity.

Problem 4. Let G = (V,E) be a simple directed graph where each edge e ∈ E carries a weight
w(e), which can be negative. It is guaranteed that G has no negative cycles. Prove: given any
vertices s, t ∈ V , at least one shortest path from s to t is a simple path (i.e., no vertex appears twice
on the path).

Solution. Consider a shortest path π from s to t that has the least number of edges. We argue that
π must be simple. Otherwise, at least one vertex v appears twice on π. Identify any two consecutive
occurrences of v — call the first occurrence v1 and the second v2. Thus, the subpath of π from v1
to v2 is a cycle. As G does not have any negative cycle, that subpath must have a non-negative
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length. We can now remove the subpath from π to obtain another shortest path from s to t that
has fewer edges than π.

Problem 5**. Let G = (V,E) be a simple directed graph where the weight of an edge (u, v) is
w(u, v). Prove: the following algorithm correctly decides whether G has a negative cycle.

algorithm negative-cycle-detection
1. pick an arbitrary vertex s ∈ V
2. set λ to the sum of the absolute weights of all edges in G
3. initialize dist(s) = 0 and dist(v) = 2λ for every other vertex v ∈ V
4. for i = 1 to |V | − 1
5. relax all the edges in E
6. for each edge (u, v) ∈ E
7. if dist(v) > dist(u) + w(u, v) then
8. return “there is a negative cycle”
9. return “no negative cycles”

Solution. We will prove two directions.

Direction 1: If the inequality of Line 7 holds for any edge (u, v), then there must be a negative
cycle. The lecture proved that, in the absence of negative cycles, Bellman-Ford’s algorithm correctly
finds all shortest path distances (from s) after |V | − 1 rounds of edge relaxations. This means that,
if there are no cycles, when we come to Line 6, the value dist(v) must be the shortest path distance
from s to v, for every v ∈ V (think: for each v ∈ V , we initialized dist(v) to 2λ, rather than ∞;
how does it affect the shortest path distances?). If Line 7 holds for some edge (u, v), however, it
means that an even shorter path from s to v has just been discovered. Therefore, G must contain a
negative cycle.

Direction 2: If there is a negative cycle, then the inequality of Line 7 must hold for at least one
edge (u, v). Suppose that the negative cycle is v1 → v2 → ... → vℓ → v1. Hence:

w(vℓ, v1) +
ℓ−1∑
i=1

w(vi, vi+1) < 0. (1)

Assume that Line 6 does not hold on any edge in E. This indicates:

• for every i ∈ [1, ℓ], dist(vi+1) ≤ dist(vi) + w(vi, vi+1);

• dist(v1) ≤ dist(vℓ) + w(vℓ, v1).

These two bullets lead to:

ℓ∑
i=1

dist(vi) ≤

(
ℓ∑

i=1

dist(vi)

)
+ w(vℓ, v1) +

ℓ−1∑
i=1

w(vi, vi+1)

⇒ 0 ≤ w(vℓ, v1) +
ℓ−1∑
i=1

w(vi, vi+1)

which contradicts (1).
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