
CSCI3160: Regular Exercise Set 2

Prepared by Yufei Tao

Problem 1 (Faster Algorithm for Finding the Number of Crossing Inversions). Let S1

and S2 be two disjoint sets of n integers. Assume that S1 is stored in an array A1, and S2 in an
array A2. Both A1 and A2 are sorted in ascending order. Design an algorithm to find the number
of such pairs (a, b) satisfying all of the following conditions: (i) a ∈ S1, (ii) b ∈ S2, and (iii) a > b.
Your algorithm must finish in O(n) time (we gave an O(n log n)-time algorithm in the class).

Solution. Merge A1 and A2 into one sorted list A, which takes O(n) time. Scan the elements of A
in ascending order. In the meantime, maintain the number t of elements that (i) originate from A2,
and (ii) have already been scanned so far: this can be done by setting t to 0 in the beginning, and
incrementing it each time an element originating from A2 is scanned. Furthermore, also maintain
a counter c as follows: c = 0 in the beginning; every time an element originating from A1 is seen,
increase c by the current value of t. The final c at the end of the algorithm is the number of crossing
inversions

Problem 2 (Faster Algorithm for Finding the Number of Inversions). Given an array A
of n integers, design an algorithm to find the number of inversions in O(n log n) time.

Solution. We will solve a more challenging problem: besides reporting the number of inversions,
the algorithm also needs to sort A in ascending order. Break A at the middle into two arrays A1

and A2 each with at most ⌈n/2⌉ elements. Recursively, find the number c1 of inversions in A1 and
the number c2 of inversions in A2. At this moment, both A1 and A2 have been sorted. We can then
apply the algorithm in Problem 1 to find the number of crossing inversions in O(n) time. Finally,
merge A1 and A2 into a sorted array using O(n) time. It is rudimentary to verify that the running
time is O(n log n).

Problem 3. Give an O(n log n)-time algorithm to solve the dominance counting problem discussed
in the class.

Solution. We will solve a more challenging problem: besides reporting the dominance counts, the
algorithm should also sort P in ascending order.

As discussed in the class, our original algorithm divides P into two halves P1 and P2 using a
vertical line ℓ, and then recurse on P1 and P2 respectively. Upon returning from the recursion, the
points of P1 and P2 have been sorted by y-coordinate. We still need to find, for each point p2 ∈ P2,
the number of points p1 ∈ P1 that are dominated by p2. Next we show that this can be done in
O(n) time. Merge P1 and P2 into one sorted list P , where the points are sorted in ascending order
by y-coordinate. Scan P . In the meantime, maintain the number t of points that (i) originate from
P1, and (ii) have already been scanned so far. Every time a point p2 originating from P2 is seen,
the number of points p1 ∈ P1 dominated by p2 is precisely the current value of t. To complete the
algorithm, return the sorted list of P . The overall time complexity now becomes O(n log n).

Problem 4 (Section 4.1 of the Textbook). Let A be an array of n integers (A is not necessarily
sorted). Each integer in A may be positive or negative. Given i, j satisfying 1 ≤ i ≤ j ≤ n,
define sub-array A[i : j] as the sequence (A[i], A[i + 1], ..., A[j]), and the weight of A[i : j] as

1



A[i] + A[i + 1] + ... + A[j]. For example, consider A = (13,−3,−25, 20,−3,−16,−23, 18); A[1 : 4]
has weight 5, while A[2 : 4] has weight −8.

1. Give an algorithm to find a sub-array of with the largest weight, among all sub-arrays A[i : j]
with j = n. Your algorithm must finish in O(n) time.

2. Give an algorithm to find a sub-array with the largest weight in O(n log n) time (among all
the possible sub-arrays).

Solution. Subproblem 1: Scan the elements of A from A[n] to A[1]. At any time, maintain the
sum s of the elements already scanned: at the beginning s = 0; after scanning an element A[i], add
A[i] to s. Every time we finish doing so for element A[i], the current value s is precisely the weight
of A[i : n]. In this way, we obtain the weights of all sub-arrays A[n : n], A[n − 1 : n], ..., A[1 : n]
(in this order) in O(n) time. The maximum weight can then be found easily.

Subproblem 2: Break A into two halves: array A1 which contains the first ⌈n/2⌉ elements, and
array A2 which contains the rest. Recursively, find the sub-array of A1 with the largest weight, and
then the sub-array of A2 with the largest weight. It remains to consider the “crossing” sub-arrays
A[i : j] where i ≤ ⌈n/2⌉ and j > ⌈n/2⌉. In particular, we want to find the “best” crossing sub-array,
i.e., the one with the maximum weight. Then, the sub-array to output can be decided easily from
the three sub-arrays aforementioned.

We say that a sub-array A1[i : j] is right grounded if j = ⌈n/2⌉, and a sub-array A2[i : j] is
left grounded if i = 1. A crucial observation is that the “best” crossing sub-array must be the
concatenation of

• the right grounded sub-array in A1 with the maximum weight, and

• the left grounded sub-array in A2 with the maximum weight.

From Subproblem 1, we know that each of the above two grounded sub-arrays can be found in
O(n) time.

Therefore, if f(n) is the time of solving the problem on an array of length n, it holds that
f(n) ≤ 2 · f(⌈n/2⌉) +O(n), which gives f(n) = O(n log n).

Problem 5. In the class, we explained how to multiply two n× n matrices in O(n2.81) time when
n is a power of 2. Explain how to ensure the running time for any value of n.

Solution. If n is not a power of 2, let m be the smallest power of 2 that is larger than n. If A,B
are the n × n input matrices, obtain an m × m matrix A′ by padding m − n dummy rows and
columns to A containing only 0 values, and similarly, an m×m matrix B′ from B. Calculate A′B′

in O(m2.81) = O((2n)2.81) = O(n2.81) time. Then, the matrix AB can be obtained by discarding
the last m− n rows and columns from the matrix A′B′.

2


