CSCI3160: Regular Exercise Set 11

Prepared by Yufei Tao

Problem 1. Consider a complete bipartite graph G = (V, E):

- V has 2n vertices, including n black vertices and n white vertices.
- E has n^2 edges, including an edge between every black vertex and every white vertex.

Use G to explain why 2 is the best the approximation ratio that we can prove for the vertex cover algorithm discussed in our lecture.

Solution. It is easy to verify that our vertex cover algorithm picks all the 2n vertices. An optimal solution, however, should include only n vertices (e.g., all the black ones).

Problem 2*. Let G = (V, E) be an input graph to the vertex cover problem. If G is a tree, describe an O(|V|)-time algorithm that finds an optimal vertex cover of G.

(Hint: Dynamic programming.)

Solution. Root the tree G at an arbitrary node. For each node u of the tree, define T(u) the subtree rooted at u. In addition, define

- OPT(u, yes) as the size of an optimal vertex cover of T(u), provided that u belongs to the vertex cover.
- OPT(u, no) as the size of an optimal vertex cover of T(u), provided that u does not belong to the vertex cover.

If u is a leaf, then

$$OPT(u, yes) = 1$$

$$OPT(u, no) = 0.$$

If u is an internal node, then

$$OPT(u, yes) = \sum_{\text{child } v \text{ of } u} \min\{OPT(v, yes), OPT(v, no)\}$$
$$OPT(u, no) = \sum_{\text{child } v \text{ of } u} OPT(v, yes)$$

Let r be the root of G. It is now rudimentary to compute OPT(r, yes) and OPT(r, no) in O(|V|) time (go through the nodes in a bottom-up order). The optimal vertex cover size is $min\{OPT(r, yes), OPT(r, no)\}$. To obtain an optimal vertex, apply the piggyback technique.

Problem 3.** Prof. Goofy proposes the following algorithm to find a vertex cover of G = (V, E):

algorithm max-deg-VC Input: G = (V, E)1. $S = \emptyset$ 2. while E not empty do 3. $v \leftarrow$ a vertex with the maximum degree in the current G4. add v to S5. remove from E all the edges of v Show that the approximation ratio of this algorithm is greater than 2.

Solution. Let us construct a bipartite graph G as follows. The set L of left vertices is $\{u_1, u_2, ..., u_{16}\}$. To generate the right vertices, for each $i \in [2, 16]$, we create a group R_i which contains $s_i = \lfloor 16/i \rfloor$ vertices, denoted as $R_i[1], R_i[2], ...,$ and $R_i[s_i]$, respectively. The set R of right vertices is the union of $R_2, R_3, ..., R_{16}$. The size of R is $\sum_{i=2}^{16} s_i = 34$.

Generate the edges of G as follows: for each group $i \in [2, 16]$, connect $R_i[j]$ to the *i* vertices $u_{i(j-1)+1}, u_{i(j-1)+2}, ..., u_{ij}$.

Running Prof. Goofy's algorithm, you will see that it picks all the 34 right vertices. As an optimal solution, we can pick the 16 left vertices.

Problem* 4 (Max-Cut). Let G = (V, E) be a simple undirected graph. Given a subset $S \subseteq V$, a *cut* induced by S is the set of edges $e \in E$ such that e has a vertex in S and another vertex in $V \setminus S$. Let OPT_G be the maximum size of a cut that can be induced by any $S \subseteq V$. Design a poly(|V|)-time (i.e., polynomial time in |V|) algorithm that returns a cut of size at least $2 \cdot OPT_G$ in expectation.

(Hint: Random assignment.)

Solution. Start with an empty S. For each vertex $u \in S$, toss a fair coin. If the coin comes up heads, add u to S; otherwise, leave u out of S. It is easy to prove that each edge $\{u, v\} \in E$ contributes to the cut induced by S with probability 1/2. Hence, the cut has size |E|/2 in expectation, which is at least $2 \cdot \text{OPT}_G$ by the trivial fact $|E| \ge \text{OPT}_G$.

Problem 5. Let G = (V, E) be a simple undirected graph where each edge $e \in E$ is assigned a non-negative weight w(e). G is connected. A spanning walk of G is a path that visits every vertex at least once. Let OPT_G be the shortest length of all spanning walks. Design a poly(|V|)-time algorithm to find a spanning walk with length at most $2 \cdot OPT_G$.

Solution. Let λ be the weight sum of all the edges in a minimum spanning tree of G. Any spanning walk must contain the edges of some spanning tree. Therefore, $OPT_G \geq \lambda$. On the other hand, our approximation algorithm for the traveling salesman problem (discussed in the lecture) finds a spanning walk with length at most $2 \cdot \lambda$, which is thus at most $2 \cdot OPT_G$.