CSCI3160: Regular Exercise Set 10

Prepared by Yufei Tao

Problem 1. Let G = (V, E) be a simple directed graph where each edge $(u, v) \in E$ carries a weight w(u, v), which can be negative. Assume $V = \{1, 2, ..., n\}$ and G has no negative cycles. For any $u, v \in V$ and any integer $k \in [0, n]$, define $spdist(u, v) \leq k$ as the shortest length of any path from u to v where all the intermediate vertices are in $\{1, 2, ..., k\}$ (recall: an *intermediate vertex* is a vertex on the path other than the source and destination vertices). Prove:

$$spdist(u, v \mid \leq k) = \min \begin{cases} spdist(u, k \mid \leq k - 1) \\ spdist(u, k \mid \leq k - 1) + spdist(k, v \mid \leq k - 1) \end{cases}$$

(Hint: First prove LHS \leq RHS and then prove LHS \geq RHS.)

Solution. We prove only LHS \geq RHS (the other direction is obvious and left to you). Consider a path π from u to v that uses intermediate vertices only from $\{1, 2, ..., k\}$ and has length $spdist(u, v | \leq k)$. If k is not an intermediate vertex of π , then the length of π is at least $spdist(u, k | \leq k - 1)$, and we have LHS \geq RHS. Next, we consider the scenario where k is an intermediate vertex of π .

Suppose that k appears only once on π . In this case, we can break π into: (i) π_1 , which is the prefix of π from u to k, and (ii) π_2 , which is the suffix of π from k to v. Both π_1 and π_2 use intermediate vertices only from $\{1, 2, ..., k-1\}$; hence, their lengths are at least $spdist(u, k | \leq k - 1)$ and $spdist(k, v | \leq k - 1)$, respectively. This implies that LHS \geq RHS.

If k appears more than once on π , it means that π contains at least one cycle from k to itself. We can remove all cycles from π , which can only decrease the length of π (no negative cycles). With all cycles removed, we are left with a path from u to v where k appears only once. Then, our earlier argument applies.

Problem 2. Let G = (V, E) be a simple directed graph where each edge $(u, v) \in E$ carries a weight w(u, v), which can be negative. Assume $V = \{1, 2, ..., n\}$. This time, G may or may not have a negative cycle. Given any $u, v \in V$ (where u and v can be identical), we define a *simple path* from u to v as a path π satisfying:

- π starts from u and ends at v;
- u is not an intermediate vertex of π ;
- v is not an intermediate vertex of π ;
- no intermediate vertex appears twice on π .

For any $u, v \in V$ and any integer $k \in [0, n]$, define $spdist(u, v) \leq k$ as the shortest length of any simple path from u to v where all the intermediate vertices are in $\{1, 2, ..., k\}$. Prove:

$$spdist(u, v \mid \leq k) = \min \begin{cases} spdist(u, k \mid \leq k - 1) \\ spdist(u, k \mid \leq k - 1) + spdist(k, v \mid \leq k - 1) \end{cases}$$

(Hint: First prove LHS \leq RHS and then prove LHS \geq RHS.)

Solution. Our proof for Problem 1 applies verbatim after removing the proof's last paragraph.

Problem 3. Let G = (V, E) be a simple directed graph where each edge $(u, v) \in E$ carries a weight w(u, v), which can be negative. Assume $V = \{1, 2, ..., n\}$. G may or may not have a negative cycle. For any $u, v \in V$ and an integer $k \in [0, n]$, define $spdist(u, v) \leq k$ as the shortest length of any <u>simple</u> path (defined as in Problem 3) from u to v where all the intermediate vertices are in $\{1, 2, ..., k\}$. Prove: G has a negative cycle if and only if $spdist(u, u) \leq n$ of for some $u \in V$. Remark. This implies that The Floyd-Warshall algorithm can detect the presence of negative cycles in $O(|V|^3)$ time.

Solution. The \Rightarrow direction. Consider a negative cycle *C*. Let *u* be the *largest* vertex on *C* (recall that each vertex is an integer in $\{1, 2, ..., n\}$), and *v* be any other vertex on *C*. Define π_1 as the path from *u* to *v* on *C*, and π_2 as the path from *v* to *u* on *C*. Note that π_1 and π_2 use intermediate vertices only from $\{1, 2, ..., n-1\}$. Therefore, the length of π_1 is at least $spdist(u, v) \leq n-1$ and the length of π_2 is at least $spdist(v, u) \leq n-1$). It thus follows from the result of Problem 2 that

$$\begin{aligned} spdist(u, u| \le n) &\le spdist(u, v| \le n - 1) + spdist(v, u| \le n - 1) \\ &\le \text{ length of } C \\ &< 0. \end{aligned}$$

The \Leftarrow direction. Assume that G has no negative cycles. We claim that $spdist(u, u| \leq n)$ must be 0 for every $u \in V$, which thus gives a contradiction. First, $spdist(u, u| \leq n)$ cannot be positive because u can obviously "reach" itself with length 0. Second, if $spdist(u, u| \leq n)$ is negative, then it indicates the existence of a negative cycle.

Problem 4. Let G = (V, E) be a simple directed graph where every edge (u, v) carries a weight w(u, v), which can be negative. G has no negative cycles. Recall that Johnson's algorithm adds a vertex v_{dummy} to G and computes the shortest path distance $spdist(v_{dummy}, v)$ from v_{dummy} to every vertex. Then, the weight of each edge (u, v) is modified to:

$$w'(u, v) = w(u, v) + spdist(v_{dummy}, u) - spdist(v_{dummy}, v).$$

Prove: $w'(u, v) \ge 0$.

Solution. The claim $w'(u, v) \ge 0$ is equivalent to $w(u, v) + spdist(v_{dummy}, u) \ge spdist(v_{dummy}, v)$. The latter inequality holds because $w(u, v) + spdist(v_{dummy}, u)$ gives the length of only one path from v_{dummy} to v, and therefore, is at least the shortest distance $spdist(v_{dummy}, v)$ from v_{dummy} to v.

Problem 5. Let G = (V, E) be a simple directed graph where every edge (u, v) carries a nonnegative weight w(u, v). Apply Johnson's algorithm to compute a new weight w'(u, v) for each edge $(u, v) \in E$. Prove: w'(u, v) = w(u, v).

Solution. Follows immediately from the fact that $spdist(v_{dummy}, v) = 0$ for every $v \in V$.