Exercises

Problem 1. Consider the set P of points as shown in the figure. Suppose that we run the closest pair algorithm on P . Recall that the algorithm first divides P in halves along the x-dimension using a vertical line ℓ (see the figure), recursively solves each half, and then builds a grid. Answer the following questions:

- 1. Draw the grid in the figure.
- 2. Consider the cell c_1 of the grid that covers point p_6 . Recall that the algorithm needs to pair up c_1 with certain cells c_2 on the right of ℓ , in order to compute the distance of (p, q) for every pair of points p, q covered by c_1 and c_2 , respectively. List the center coordiantes of all such cells c_2 .

Problem 2. Let ℓ be a vertical line. Let p be a point on the left of ℓ , and P be a set of points on the right of ℓ . Define r as the distance of the closest pair of P. We throw away from P all the points whose distances to ℓ are greater than r. Define P' to be the set of remaining points in P.

For p, we define its r-bounded nearest neighbor (NN) as the point q in P that is closest to p, among all the points whose distances to p are at most r (if no such points exist, then p has no r-nearest neighbor).

For example, in the figure below, the closest pair in $P = \{p_1, \ldots, p_{10}\}$ is (p_5, p_7) whose distance For example, in the figure below, the closest pair in $P = \{p_1, \ldots, p_{10}\}$ is (p_5, p_7) whose distance
is $2\sqrt{2}$. Thus, $r = 2\sqrt{2}$ and $P' = \{p_1, p_2, p_3, p_4\}$. If $p = p_1^*$, then p has no r-bounded NN, while if $p = p_2^*$, the *r*-bounded NN of *p* is p_1 .

Consider the following approach of finding the r-bounded NN of p. First, sort $P' \cup \{p\}$ by y-coordinate. Then, identify the position of p in the sorted list. Inspect the 20 points before and after p , respectively (namely, in total 40 points are inspected). Prove that the r -bounded NN (if exists) must be among those 40 points.

Problem 3. Let ℓ be a vertical line. Let P_1 be a set of points on the left of ℓ , and P_2 be a set of points on the right of ℓ . Define r_1 (or r_2) as the distance of the closest pair in P_1 (or P_2 , resp.), and $r = \min\{r_1, r_2\}$. Suppose that P_1 and P_2 have been sorted by y-coordinate. Give an $O(n)$ time (where $n = |P_1| + |P_2|$) algorithm to find, for each $p_1 \in P_1$, its r-bounded NN in P_2 .

Problem 4. Let P be a set of points in \mathbb{R}^2 . Give an algorithm to find the closest pair of P in $O(n \log n)$ worst case time.

Problem 5. Let P be a set of points in \mathbb{R}^3 . Give an algorithm to find the closest pair of P in $O(n \log n)$ expected time.