
Lecture Notes: Computation Model

Yufei Tao
Department of Computer Science and Engineering
Chinese University of Hong Kong
taoyf@cse.cuhk.edu.hk

Computer science is a subject under mathematics. From your undergraduate study, you should
have learned that, before you can even start to analyze the “running time” of an algorithm, you
need to first define a computation model properly.

The random access machine (RAM) model. This is perhaps the model you are most familiar
with. In the RAM model, the memory is an infinite sequence of cells, where each cell is a sequence
of w bits for some integer w, and is indexed by an integer address. Each cell is also called a word;
and accordingly, the parameter w is often referred to as the word length. The CPU, on the other
hand, has a (constant) number of cells, each of which is called a register. The CPU can perform
only the following atomic operations:

• Set a register to some constant, or to the content of another register.

• Compare two numbers in registers.

• Perform +,−, ·, / on two numbers in registers.

• Perform the AND, OR, XOR on two registers.

• When an address x has been stored in a register, read the content of the memory cell at
address x into a register, or conversely, write the content of a register into the memory cell.

The time (or cost) of an algorithm is measured by the number of atomic operations it performs.
Note that the time is an integer.

A remark is in order about the word length w: it needs to be long enough to encode all the
memory addresses! For example, if your algorithm uses n2 memory cells for some integer n, then
the word length will need to have at least 2 log2 n bits.

Dealing with real numbers. In the model defined earlier, the (memory/register) cells can only
store integers. Next, we will slightly modify the model in order to deal with real values.

Note that simply “allowing” each cell to store a real value does not give us a satisfactory model
because it creates several nasty issues. For example, how many bits would you use for a real value?
In fact, even if the number of bits were infinite, still we would not be able to represent all the
real values even in a short interval like [0, 1] — the set of real values in the interval is uncountably
infinite! If we cannot even specify the word length for a “real-valued” cell, how to properly define
the atomic operations for performing shifts and the logic operations AND, OR, and XOR?

We can alleviate this issue by introducing the concept of black box. We still allow a (mem-
ory/register) cell c to store a real value x, but in this case, the algorithm is forbidden to look inside
c, that is, the algorithm has no control over the representation of x. In other words, c is now a black
box, holding the value x precisely (by magic).

1



A black box remains as a black box after computation. For example, suppose that two registers
are both storing

√
2. We can calculate their product 2, but the product must still be understood

as a real value (even though it is an integer). This is similar to the requirement in C++ that the
product of two float numbers remains as a float number.

Now we can formally extend the RAM model as follows:

• Each cell can store either an integer or a real value.

• For operations +,−, ∗, /, if one of the operand numbers is a real value, the result is a real
value.

• Among the atomic operations mentioned earlier, shifting, AND, OR, and XOR cannot be
performed on registers that store real values.

We should note that, although mathematically sound, the resulting model — often referred to
as the real RAM model — is not necessarily a realistic model in practice because no one has proven
that it is polynomial-time equivalent to Turing machines (it would be surprising if it was). We must
be very careful not to abuse the power of real value computation. For example, in the standard
RAM model (with only integers), it is still open whether a polynomial time algorithm exists for the
following problem:

Input: integers x1, x2, ..., xn and k
Output: whether

∑n
i=1

√
xi ≥ k.

It is rather common, however, to see people design algorithms by assuming that the square root
operator can be carried out in polynomial time — in that case, the above problem can obviously be
settled in polynomial time under the real-RAM model!

Randomness. All the atomic operations are deterministic so far. In other words, our models so
far do not permit randomization, which is important to certain algorithmic techniques (such as
hashing).

To fix the issue, we introduce one more atomic operation for both the RAM and real-RAM
models. This operation, named RAND , takes two non-negative integer parameters x and y, and
returns an integer chosen uniformly at random from [x, y]. In other words, every integer in [x, y]
can be returned with probability 1/(y − x + 1). The values of x, y should be in [0, 2w − 1] because
they each need to be encoded in a word.

Math conventions. We will assume that you are familiar with the notations of O(.),Ω(.),
Θ(.), o(.), and ω(.). The notation Õ(f(n1, n2, ..., nx)) represents the class of functions that are
O(f(n1, n2, ..., nx) · polylog(n1 + n2 + ... + nx)), namely, Õ(.) hides a polylogarithmic factor. The
symbol R denotes the set of real values.

2


