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This lecture will introduce grid decomposition, which is a fundamental
technique for solving many computational geometry problems. We will
demonstrate the technique by using it to solve the closest pair and close
pairs problems.
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(Closest Pair and Close Pairs)

Let P be a set of points RY. The objective of the closest pair
problem is to output a pair of distinct points p, g € P that have
the smallest distance to each other, or formally:

dist(p,q) = min dist(p’, q').
p,qd eP,p #4q

where dist(.,.) represents the Euclidean distance of two points.

Let P be a set of points R and r a real value. The objective of
the close pairs problem is to output all pairs of distinct points
p, g € P satisfying:

dist(p,q) < r.
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CExampIe: Closest Pair)

P12
12— o
L obs
10— o
P2
° Pe P13
81— [} [e]
L oPs
60"
Oru gIO
b7
41— o
9 [ Ps
[ © b1
— [e]
O I O
0 2 4 6 8 10 12

The answer is (ps, ps).
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(Example: Close Pairs)

Assume r = 4/2.
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The answer is {(P17P4)7 (P17P2)7 (P2aP3)7 (P2aP6)7 (P27P4)a }
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Both problems can be easily solved in O(n?) time where n = |P|.
We will settle the closest pair problem in O(nlog n) expected time
and the close pair problem in O(n + k) expected time, where k is
the number of pairs reported.
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(Closest Pair in 2D)

We will focus on 2D.

Divide P evenly using a vertical line £. Let Py (or P,) be the set of
points on the left (or right) of £. Recursively find the closest pairs in Py
and P,, respectively.
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The closest pair of Py is (p2, p3s) and that of P, is (p7, ps)-
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(Closest Pair in 2D)

It remains to find the closest pair (p1, p2) satisfying p1 € Py and ps € P
(i.e., p1, po come from different sides). Call it the crossing closest pair.
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The crossing closest pair is (ps, ps). The global closest pair must be

among the two “local” pairs (p2, p3), (p7, ps), and the crossing pair

(Ps, ps)-
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(Closest Pair in 2D)

We now explain how to find the crossing closest pair. Let r; be the
distance of the closest pair in P; and r» be the distance of the closest
pair in P,. Define r = min{r, rn}.
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In the above example, n = /8, r» =3, and r = min{r,n}t = V8.

Observation: We care about the crossing closest pair only if its
distance is smaller than r.
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(Closest Pair in 2D>

Impose a grid G where (i) each cell is an axis-parallel square with side
length r/\ﬁ and (ii) £ is a line in the grid.
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Each point p can be covered by at most 4 cells.

10/26

Grid Decomposition



(Closest Pair in 2D)

For each cell ¢, denote by c(P) the set of points in P covered by c.

Observation: For every ¢, |c(P)| <2 = O(1)!

Proof: The diagonal of ¢ has length r. Convince yourself that ¢ covering

more than 2 points would contradict the definition of r. O
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(Closest Pair in 2D)

Group the points by the cells they belong. A cell is non-empty if it
covers at least one point. There can be at most 4n non-empty cells.
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In the above example, there are 25 non-empty cells.
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(Closest Pair in 2D)

Each cell can be uniquely identified by its centroid’s coordinates, which
we refer to as the cell’'s id. For each cell ¢, we create a linked list
containing all the points in c(P) (i.e., the set of points covered by c).
This can be done using hashing in O(n) expected time.
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(Closest Pair in 2D>

Let c1, co be two non-empty cells. We say that ¢; is an r-neighbor
of ¢ (and vice versa) if their mindist is at most r.

To find a crossing closest pair within distance r, it suffices to consider
non-empty cells ¢, ¢; satisfying (i) c; is on the left of ¢, and ¢, is on the
right, and (ii) ¢; and ¢, are r-neighbors.
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(Closest Pair in 2D>

Observation: Each non-empty cell ¢ on the left of ¢ has O(1)
r-neighbor cells on the right of /.
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For example, for Cell 8, we need to consider 8 pairs: (8, 10), (8, 11), (8,
12), (8, 13), (8, 14), (8, 15), (8, 16), (8, 17). o
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(Closest Pair in 2D>

The above discussion motivates the following algorithm for finding a
crossing closest pair within distance r:

—

for every non-empty cell ¢; on the left of £
for every r-neighbor cell ¢, of ¢; on the right of £
3. calculate the distance of each pair of
points (p1, p2) € c1(P) x c2(P)
4. return the closest one among all the pairs inspected at Line 3, if the
pair has distance at most r.

N

As mentioned, for each ¢y, there are O(1) cells ¢, to consider. Since
¢1(P) and c;(P) each contain at most 2 points, each execution of Line 3
takes only O(1) time. The overall algorithm takes O(n) expected time in
total.

Think: How to find the cells ¢, for each ¢; in O(1) expected time?
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(Closest Pair in 2D: Analysis)

Let 7(n) be the expected running time of our algorithm, it follows that
f(n) < 2-f(n/2)+ O(n)

while f(n) = O(1) for n < 2.

The recurrence solves to f(n) = O(nlog n).
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In the closest-pair problem, we utilized the property that each cell
in the grid has O(1) r-neighbor cells.

We now proceed to tackle the close-pairs problem by using the
same property. Recall that our objective is to achieve O(n + k)
expected time, where k is the number of pairs reported.
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Recall the definition of the close-pairs problem.

Let P be a set of distinct points RY and r a real value. The objective
is to output all pairs of distinct points p, g € P satisfying:

dist(p,q) < r.

We will again focus on 2D space.
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(Close Pairs in 2D)

We will explain the algorithm using the same dataset and r = 4/2.
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Step 1: Impose an arbitrary grid where each square cell has side length
r/\/2 = 4. |dentify all the non-empty cells.
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(Close Pairs in 2D)

Step 2: For each cell ¢, let ¢(P) be the set of points covered by c.
Simply report all pairs of distinct points in ¢(P) — notice that any two
points in the same cell must have distance at most r.
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For example, 1 pair is reported for Cell 1, and 3 pairs for Cell 8.
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(Close Pairs in 2D)

Step 3: For each cell ¢y, identify all of its r-neighbor cells ¢;. For every
G2, inspect all pairs of distinct points (p1, p2) € c1(P) X ¢(P), and
report the ones within distance at most r.
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For example, from Cells 2 and 4, inspect all the 8 pairs in

{p2, p3} x {pa, ps, P, P}, and report (p2, pa), (P2, Ps), (3, Ps)-
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(Close Pairs in 2D: Analysis)

Next, we will prove that our algorithm runs in O(n+ k) expected time.
At first glance, this may look surprising. Recall that in Step 3, for each
pair of r-neighbor cells (¢, ¢2), we spend a quadratic amount of time
O(|c1(P)||c2(P)]), but risk finding no answer pairs at all. Indeed, the
core of the analysis is to show that the total time of doing so is bounded
by O(n + k).

We will focus on Steps 2 and 3 because Step 1 obviously takes O(n)
expected time (hashing).
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(Close Pairs in 2D: Analysis (Step 2) )

Let ¢, o, ..., Cmy be the non-empty cells, for some m > 1. Define
n; = |¢i(P)|, namely, the number of points covered by c;, for each
i € [1,m]. Clearly > n; > n.

The cost of Step 2 is

Notice that
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(Close Pairs in 2D: Analysis (Step 3))

We will prove that the cost of Step 3 is >_/", O(n?), and therefore,
bounded by O(n + k).

Let ¢; and ¢; be a pair of r-neighbor cells. Step 3 spends O(n; - nj) time
to process ¢;(P) x ¢j(P). Clearly:

ni - nj < (n? + njz)/2.
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(Close Pairs in 2D: Analysis (Step 3))

The total cost of Step 3 can be written as

m

o> > (n? +n?)

i=1 j: ¢ is an r-neighbor of ¢

which is bounded by O(>"7", n?) because a cell has O(1) r-neighbors.

We now conclude that the running time of our close-pairs algorithm is
O(n + k) expected.
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