Grid Decomposition

Yufei Tao

CSE Dept
Chinese University of Hong Kong

1/26

Grid Decomposition

This lecture will introduce grid decomposition, which is a fundamental
technique for solving many computational geometry problems. We will
demonstrate the technique by using it to solve the closest pair and close
pairs problems.

2/26

Grid Decomposition

(Closest Pair and Close Pairs)

Let P be a set of points RY. The objective of the closest pair
problem is to output a pair of distinct points p, g € P that have
the smallest distance to each other, or formally:

dist(p,q) = min dist(p’, q').
p,qd eP,p #4q

where dist(.,.) represents the Euclidean distance of two points.

Let P be a set of points R and r a real value. The objective of
the close pairs problem is to output all pairs of distinct points
p, g € P satisfying:

dist(p,q) < r.

3/26

Grid Decomposition

CExampIe: Closest Pair)

P12
12— o
L obs
10— o
P2
° Pe P13
81— [} [e]
L oPs
60"
Oru gIO
b7
41— o
9 [Ps
[© b1
— [e]
O I O
0 2 4 6 8 10 12

The answer is (ps, ps).

4/26

Grid Decomposition

(Example: Close Pairs)

Assume r = 4/2.

P12
[e]

Pe P13
[¢]

The answer is {(P17P4)7 (P17P2)7 (P2aP3)7 (P2aP6)7 (P27P4)a }

5/26

Grid Decomposition

Both problems can be easily solved in O(n?) time where n = |P|.
We will settle the closest pair problem in O(nlog n) expected time
and the close pair problem in O(n + k) expected time, where k is
the number of pairs reported.

6/26

Grid Decomposition

(Closest Pair in 2D)

We will focus on 2D.

Divide P evenly using a vertical line £. Let Py (or P,) be the set of
points on the left (or right) of £. Recursively find the closest pairs in Py
and P,, respectively.

P12
12— ¢ o
| oPs
10— oh
Opz
Pe P13
81— o [¢]
s
L le
6o
y2 P1o
— [¢] [¢]
p7
44— o
ol &
[P
L [e]
[I N I O

The closest pair of Py is (p2, p3s) and that of P, is (p7, ps)-

7/26

Grid Decomposition

(Closest Pair in 2D)

It remains to find the closest pair (p1, p2) satisfying p1 € Py and ps € P
(i.e., p1, po come from different sides). Call it the crossing closest pair.

12

Pa
o

’

P12
[e]

D13
[¢]

P10
[¢]

The crossing closest pair is (ps, ps). The global closest pair must be

among the two “local” pairs (p2, p3), (p7, ps), and the crossing pair

(Ps, ps)-

8/26

Grid Decomposition

(Closest Pair in 2D)

We now explain how to find the crossing closest pair. Let r; be the
distance of the closest pair in P; and r» be the distance of the closest
pair in P,. Define r = min{r, rn}.

P12
12— ¢ o
L obs
10— o
P2
o Pe P13
81— [} [¢]
-, oPs
1
61—
o P4 Pio
— [¢] P [¢]
41— o
9 [Ps
B © P
— [¢]
[O T O
0 2 4 8 10 12

In the above example, n = /8, r» =3, and r = min{r,n}t = V8.

Observation: We care about the crossing closest pair only if its
distance is smaller than r.

9/26

Grid Decomposition

(Closest Pair in 2D>

Impose a grid G where (i) each cell is an axis-parallel square with side
length r/\ﬁ and (ii) £ is a line in the grid.

¢ P12
[S) R Femer O
o . . .
() Y 4 M S
[T T
° | \oPe | | P13
8fm--rmm=r=O=fmmmp-== e
' ' Psi ' '
= | | | |
6 Pl-___-_______.___.___._
. T o T
— 1 1 1
P
Y) S S S
= | | | |
. ' 1 DPs ' ' 1
i Ity 7
= | \ el
I [I |
0 2 4 8 10 12

Each point p can be covered by at most 4 cells.

10/26

Grid Decomposition

(Closest Pair in 2D)

For each cell ¢, denote by c(P) the set of points in P covered by c.

Observation: For every ¢, |c(P)| <2 = O(1)!

Proof: The diagonal of ¢ has length r. Convince yourself that ¢ covering

more than 2 points would contradict the definition of r. O
£ P12
12— - mmmpmm |- PR N
L1 on Lo
] N Y L Sy S
2 ' ' . .
| | Pe | | 2t
8-—--.—---.—-0(- ------- .----c‘;)lf
R
6—-O-pil [R R |
HE—" T Tho T
[X P Q .
7) o Y Ny Ay o
T i Lo
S It i et i
— Il Il Il i O
I T O O O I A
0 2 4 8 10 12
11/26

Grid Decomposition

(Closest Pair in 2D)

Group the points by the cells they belong. A cell is non-empty if it
covers at least one point. There can be at most 4n non-empty cells.

¢ s
L Y i hb e O -
— 1 oM 14117) 22|
10--pgl----1-------4';-119--1----1--
[e C o . . .
O 0 B | 1B 160 21,2
8——--.----.--o----p—.—---.—---o-

1 1 81 1 1
2 8 | o 20

b 12 A
6f—C-r--- ot Al il
=11 50 11§ 150 19,

' ' p7 ' 1
) A < A A
o 7 | 100 . .

. 1 v Ds 1 1 1
7 M A 0) A

' '6 ' .1(1)11.

— 1 1 1 1 1
I I I O I
0 2 4 s 10 12

In the above example, there are 25 non-empty cells.

12/26

Grid Decomposition

(Closest Pair in 2D)

Each cell can be uniquely identified by its centroid’s coordinates, which
we refer to as the cell’'s id. For each cell ¢, we create a linked list
containing all the points in c(P) (i.e., the set of points covered by c).
This can be done using hashing in O(n) expected time.

¢ #
) E PRI o
— 1 oM 14117) 22

1 1 L pg 1
T Rl LR
e C o . . Do

03: e 13: 16: 21 %71;20
8“--.----.--o----p—.—---.—---o-

: : a1 : X
— 8 | o 20

o oo
6f—C-r--- ot Al il
1150 11§ 150 19,

' ' pr ' 1
e
o L7 | 100 . .

. 1 v Ds 1 1 1
e

' '6 ' I‘gill

— 1 1 1 1 1
T O O O O
0 2 4 s 10 12

13/26

Grid Decomposition

(Closest Pair in 2D>

Let c1, co be two non-empty cells. We say that ¢; is an r-neighbor
of ¢ (and vice versa) if their mindist is at most r.

To find a crossing closest pair within distance r, it suffices to consider
non-empty cells ¢, ¢; satisfying (i) c; is on the left of ¢, and ¢, is on the
right, and (ii) ¢; and ¢, are r-neighbors.

¢ i
{1 omer O -
— 1o 14017 1 22,
10--10-:----:-------43719--:----:--
732: : %o 131 16 1 21 '17_25
8“2":'"':"g""p;r"'r'z;)‘?' For example, we need to consider
— 1 1 O_ 1 1 .
Lo 1?;5 the cell pair (5, 11), but not (5,
1 4 1 1
11050 115019 15).
S e
R 2
2"":"":"Cg'"".""."gn'."
O O O O O A O
0 2 4 s 10 12

14/26

(Closest Pair in 2D>

Observation: Each non-empty cell ¢ on the left of ¢ has O(1)
r-neighbor cells on the right of /.

12
. P
P:
— 1ol 14117 1 22
10-—-,;1----1---- B
21 1 1 1 1
- 9 : 25
03: : De 12: 16: 21 I{)13
e Y o St
' ' Psi ' '
- 8 | o 20
2o oo
60 - = - - R
=11 50 11, 150 19,
' ' P70 ' '
7) S
[7 | 100 . .
24— --r---FrO-f---r---r---F-
' ' ' v Py,
- L6 | | O
[O O
0 2 4 6 S 10 12

For example, for Cell 8, we need to consider 8 pairs: (8, 10), (8, 11), (8,
12), (8, 13), (8, 14), (8, 15), (8, 16), (8, 17). o

Grid Decomposition

(Closest Pair in 2D>

The above discussion motivates the following algorithm for finding a
crossing closest pair within distance r:

—

for every non-empty cell ¢; on the left of £
for every r-neighbor cell ¢, of ¢; on the right of £
3. calculate the distance of each pair of
points (p1, p2) € c1(P) x c2(P)
4. return the closest one among all the pairs inspected at Line 3, if the
pair has distance at most r.

N

As mentioned, for each ¢y, there are O(1) cells ¢, to consider. Since
¢1(P) and c;(P) each contain at most 2 points, each execution of Line 3
takes only O(1) time. The overall algorithm takes O(n) expected time in
total.

Think: How to find the cells ¢, for each ¢; in O(1) expected time?

16/26

Grid Decomposition

(Closest Pair in 2D: Analysis)

Let 7(n) be the expected running time of our algorithm, it follows that
f(n) < 2-f(n/2)+ O(n)

while f(n) = O(1) for n < 2.

The recurrence solves to f(n) = O(nlog n).

17/26

Grid Decomposition

In the closest-pair problem, we utilized the property that each cell
in the grid has O(1) r-neighbor cells.

We now proceed to tackle the close-pairs problem by using the
same property. Recall that our objective is to achieve O(n + k)
expected time, where k is the number of pairs reported.

18/26

Grid Decomposition

Recall the definition of the close-pairs problem.

Let P be a set of distinct points RY and r a real value. The objective
is to output all pairs of distinct points p, g € P satisfying:

dist(p,q) < r.

We will again focus on 2D space.

19/26

Grid Decomposition

(Close Pairs in 2D)

We will explain the algorithm using the same dataset and r = 4/2.

P12
12— --m - - - Fe-————— [EpE—— el
— o’ I I
10— X 5 &P g
701)2 | 1 :
: Pe : bla
N e -G ----- Femm--- -
— oP, :
1 1 1 1
6—0 4 7
’ 1 3)1 : P
— pr] [¢] 1
Y S Fome o SR -
! | !
— 1 1 1
v b5 1 1
— 6
2 PO S
— 1 1 o 1
S I
0 2 4 6 8 10 12

Step 1: Impose an arbitrary grid where each square cell has side length
r/\/2 = 4. |dentify all the non-empty cells.

20/26

(Close Pairs in 2D)

Step 2: For each cell ¢, let ¢(P) be the set of points covered by c.
Simply report all pairs of distinct points in ¢(P) — notice that any two
points in the same cell must have distance at most r.

P12

12— ------ R PR G-
- ol i ‘

10— | 5 o 8
IOPQ 1 1 1

. Pe : P13

e F-G-----p------ -
I :

6 - 4T
L (%74 1 glﬂ 1

! |
¥ Fome e G apmmmen -
' | '

9 : Ps : 6 :
B IS Pl
— 1 1 O 1

S I

0 2 4 6 8 10 12

For example, 1 pair is reported for Cell 1, and 3 pairs for Cell 8.

21/26

Grid Decomposition

(Close Pairs in 2D)

Step 3: For each cell ¢y, identify all of its r-neighbor cells ¢;. For every
G2, inspect all pairs of distinct points (p1, p2) € c1(P) X ¢(P), and
report the ones within distance at most r.

P12
12= - m == - —pmmmme-- R RN
— o?3 . :
10— | 5 o s)
Op2 1 1 1
— 1 1 1

Pe P13

] S b G- Femmee- 2
=, : o8 :
1 1 1 1

61— 4 7

ol L Do
- e . o .
h P7 '

/| R Gormmmmmm - -
2’ D5 | I
C P03 Pl
— I I O
N O T O A

0 2 4 6 g 10 12

For example, from Cells 2 and 4, inspect all the 8 pairs in

{p2, p3} x {pa, ps, P, P}, and report (p2, pa), (P2, Ps), (3, Ps)-
22/26

(Close Pairs in 2D: Analysis)

Next, we will prove that our algorithm runs in O(n+ k) expected time.
At first glance, this may look surprising. Recall that in Step 3, for each
pair of r-neighbor cells (¢, ¢2), we spend a quadratic amount of time
O(|c1(P)||c2(P)]), but risk finding no answer pairs at all. Indeed, the
core of the analysis is to show that the total time of doing so is bounded
by O(n + k).

We will focus on Steps 2 and 3 because Step 1 obviously takes O(n)
expected time (hashing).

23/26

Grid Decomposition

(Close Pairs in 2D: Analysis (Step 2))

Let ¢, o, ..., Cmy be the non-empty cells, for some m > 1. Define
n; = |¢i(P)|, namely, the number of points covered by c;, for each
i € [1,m]. Clearly > n; > n.

The cost of Step 2 is

Notice that

24/26

Grid Decomposition

(Close Pairs in 2D: Analysis (Step 3))

We will prove that the cost of Step 3 is >_/", O(n?), and therefore,
bounded by O(n + k).

Let ¢; and ¢; be a pair of r-neighbor cells. Step 3 spends O(n; - nj) time
to process ¢;(P) x ¢j(P). Clearly:

ni - nj < (n? + njz)/2.

25/26

Grid Decomposition

(Close Pairs in 2D: Analysis (Step 3))

The total cost of Step 3 can be written as

m

o> > (n? +n?)

i=1 j: ¢ is an r-neighbor of ¢

which is bounded by O(>"7", n?) because a cell has O(1) r-neighbors.

We now conclude that the running time of our close-pairs algorithm is
O(n + k) expected.

26/26

Grid Decomposition

