
1/26

Grid Decomposition

Yufei Tao

CSE Dept
Chinese University of Hong Kong

Grid Decomposition

2/26

This lecture will introduce grid decomposition, which is a fundamental

technique for solving many computational geometry problems. We will

demonstrate the technique by using it to solve the closest pair and close

pairs problems.

Grid Decomposition

3/26

Closest Pair and Close Pairs

Let P be a set of points Rd . The objective of the closest pair
problem is to output a pair of distinct points p, q ∈ P that have
the smallest distance to each other, or formally:

dist(p, q) = min
p′, q′ ∈ P, p′ 6= q′

dist(p′, q′).

where dist(., .) represents the Euclidean distance of two points.

Let P be a set of points Rd and r a real value. The objective of
the close pairs problem is to output all pairs of distinct points
p, q ∈ P satisfying:

dist(p, q) ≤ r .

Grid Decomposition

4/26

Example: Closest Pair

0 2 4 6 8 10

2

4

6

8

10
p2

p3

p6

p12

p9

p8
p1

p4

p5

p10
p7

p11

p13

12

12

The answer is (p6, p8).

Grid Decomposition

5/26

Example: Close Pairs

Assume r = 4
√

2.

0 2 4 6 8 10

2

4

6

8

10
p2

p3

p6

p12

p9

p8
p1

p4

p5

p10
p7

p11

p13

12

12

The answer is {(p1, p4), (p1, p2), (p2, p3), (p2, p6), (p2, p4), ...}.

Grid Decomposition

6/26

Both problems can be easily solved in O(n2) time where n = |P|.
We will settle the closest pair problem in O(n log n) expected time
and the close pair problem in O(n + k) expected time, where k is
the number of pairs reported.

Grid Decomposition

7/26

Closest Pair in 2D

We will focus on 2D.

Divide P evenly using a vertical line `. Let P1 (or P2) be the set of
points on the left (or right) of `. Recursively find the closest pairs in P1

and P2, respectively.

0 2 4 6 8 10

2

4

6

8

10
p2

p3

p6

p12

p9

p8
p1

p4

p5

p10
p7

p11

p13

12

12
`

The closest pair of P1 is (p2, p3) and that of P2 is (p7, p8).

Grid Decomposition

8/26

Closest Pair in 2D

It remains to find the closest pair (p1, p2) satisfying p1 ∈ P1 and p2 ∈ P2

(i.e., p1, p2 come from different sides). Call it the crossing closest pair.

0 2 4 6 8 10

2

4

6

8

10
p2

p3

p6

p12

p9

p8
p1

p4

p5

p10
p7

p11

p13

12

12
`

The crossing closest pair is (p6, p8). The global closest pair must be

among the two “local” pairs (p2, p3), (p7, p8), and the crossing pair

(p6, p8).

Grid Decomposition

9/26

Closest Pair in 2D

We now explain how to find the crossing closest pair. Let r1 be the
distance of the closest pair in P1 and r2 be the distance of the closest
pair in P2. Define r = min{r1, r2}.

0 2 4 6 8 10

2

4

6

8

10
p2

p3

p6

p12

p9

p8
p1

p4

p5

p10
p7

p11

p13

12

12
`

In the above example, r1 =
√

8, r2 = 3, and r = min{r1, r2} =
√

8.

Observation: We care about the crossing closest pair only if its
distance is smaller than r .

Grid Decomposition

10/26

Closest Pair in 2D

Impose a grid G where (i) each cell is an axis-parallel square with side
length r/

√
2, and (ii) ` is a line in the grid.

0 2 4 6 8 10

2

4

6

8

10
p2

p3

p6

p12

p9

p8
p1

p4

p5

p10
p7

p11

p13

12

12
`

Each point p can be covered by at most 4 cells.

Grid Decomposition

11/26

Closest Pair in 2D

For each cell c , denote by c(P) the set of points in P covered by c .

Observation: For every c , |c(P)| ≤ 2 = O(1)!

Proof: The diagonal of c has length r . Convince yourself that c covering
more than 2 points would contradict the definition of r .

0 2 4 6 8 10

2

4

6

8

10
p2

p3

p6

p12

p9

p8
p1

p4

p5

p10
p7

p11

p13

12

12
`

Grid Decomposition

12/26

Closest Pair in 2D

Group the points by the cells they belong. A cell is non-empty if it
covers at least one point. There can be at most 4n non-empty cells.

1

0 2 4 6 8 10

2

4

6

8

10
p2

p3

p6

p12

p9

p8
p1

p4

p5

p10
p7

p11

p13

12

12
`

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

In the above example, there are 25 non-empty cells.

Grid Decomposition

13/26

Closest Pair in 2D

Each cell can be uniquely identified by its centroid’s coordinates, which
we refer to as the cell’s id. For each cell c , we create a linked list
containing all the points in c(P) (i.e., the set of points covered by c).
This can be done using hashing in O(n) expected time.

1

0 2 4 6 8 10

2

4

6

8

10
p2

p3

p6

p12

p9

p8
p1

p4

p5

p10
p7

p11

p13

12

12
`

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Grid Decomposition

14/26

Closest Pair in 2D

Let c1, c2 be two non-empty cells. We say that c1 is an r-neighbor
of c2 (and vice versa) if their mindist is at most r .

To find a crossing closest pair within distance r , it suffices to consider
non-empty cells c1, c2 satisfying (i) c1 is on the left of `, and c2 is on the
right, and (ii) c1 and c2 are r -neighbors.

1

0 2 4 6 8 10

2

4

6

8

10
p2

p3

p6

p12

p9

p8
p1

p4

p5

p10
p7

p11

p13

12

12
`

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

For example, we need to consider
the cell pair (5, 11), but not (5,
15).

Grid Decomposition

15/26

Closest Pair in 2D

Observation: Each non-empty cell c on the left of ` has O(1)
r -neighbor cells on the right of `.

1

0 2 4 6 8 10

2

4

6

8

10
p2

p3

p6

p12

p9

p8
p1

p4

p5

p10
p7

p11

p13

12

12
`

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

For example, for Cell 8, we need to consider 8 pairs: (8, 10), (8, 11), (8,

12), (8, 13), (8, 14), (8, 15), (8, 16), (8, 17).

Grid Decomposition

16/26

Closest Pair in 2D

The above discussion motivates the following algorithm for finding a
crossing closest pair within distance r :

1. for every non-empty cell c1 on the left of `
2. for every r -neighbor cell c2 of c1 on the right of `
3. calculate the distance of each pair of

points (p1, p2) ∈ c1(P)× c2(P)
4. return the closest one among all the pairs inspected at Line 3, if the

pair has distance at most r .

As mentioned, for each c1, there are O(1) cells c2 to consider. Since
c1(P) and c2(P) each contain at most 2 points, each execution of Line 3
takes only O(1) time. The overall algorithm takes O(n) expected time in
total.

Think: How to find the cells c2 for each c1 in O(1) expected time?

Grid Decomposition

17/26

Closest Pair in 2D: Analysis

Let f (n) be the expected running time of our algorithm, it follows that

f (n) ≤ 2 · f (n/2) + O(n)

while f (n) = O(1) for n ≤ 2.

The recurrence solves to f (n) = O(n log n).

Grid Decomposition

18/26

In the closest-pair problem, we utilized the property that each cell
in the grid has O(1) r -neighbor cells.

We now proceed to tackle the close-pairs problem by using the
same property. Recall that our objective is to achieve O(n + k)
expected time, where k is the number of pairs reported.

Grid Decomposition

19/26

Recall the definition of the close-pairs problem.

Let P be a set of distinct points Rd and r a real value. The objective
is to output all pairs of distinct points p, q ∈ P satisfying:

dist(p, q) ≤ r .

We will again focus on 2D space.

Grid Decomposition

20/26

Close Pairs in 2D

We will explain the algorithm using the same dataset and r = 4
√

2.

1

0 2 4 6 8 10

2

4

6

8

10
p2

p3

p6

p12

p9

p8
p1

p4

p5

p10
p7

p11

p13

12

12

2

3

4

5

6

7

8

Step 1: Impose an arbitrary grid where each square cell has side length

r/
√

2 = 4. Identify all the non-empty cells.

Grid Decomposition

21/26

Close Pairs in 2D

Step 2: For each cell c , let c(P) be the set of points covered by c .
Simply report all pairs of distinct points in c(P) — notice that any two
points in the same cell must have distance at most r .

1

0 2 4 6 8 10

2

4

6

8

10
p2

p3

p6

p12

p9

p8
p1

p4

p5

p10
p7

p11

p13

12

12

2

3

4

5

6

7

8

For example, 1 pair is reported for Cell 1, and 3 pairs for Cell 8.

Grid Decomposition

22/26

Close Pairs in 2D

Step 3: For each cell c1, identify all of its r -neighbor cells c2. For every
c2, inspect all pairs of distinct points (p1, p2) ∈ c1(P)× c2(P), and
report the ones within distance at most r .

1

0 2 4 6 8 10

2

4

6

8

10
p2

p3

p6

p12

p9

p8
p1

p4

p5

p10
p7

p11

p13

12

12

2

3

4

5

6

7

8

For example, from Cells 2 and 4, inspect all the 8 pairs in

{p2, p3} × {p4, p6, p7, p8}, and report (p2, p4), (p2, p6), (p3, p6).

Grid Decomposition

23/26

Close Pairs in 2D: Analysis

Next, we will prove that our algorithm runs in O(n + k) expected time.
At first glance, this may look surprising. Recall that in Step 3, for each
pair of r -neighbor cells (c1, c2), we spend a quadratic amount of time
O(|c1(P)||c2(P)|), but risk finding no answer pairs at all. Indeed, the
core of the analysis is to show that the total time of doing so is bounded
by O(n + k).

We will focus on Steps 2 and 3 because Step 1 obviously takes O(n)

expected time (hashing).

Grid Decomposition

24/26

Close Pairs in 2D: Analysis (Step 2)

Let c1, c2, ..., cm be the non-empty cells, for some m ≥ 1. Define
ni = |ci (P)|, namely, the number of points covered by ci , for each
i ∈ [1,m]. Clearly

∑m
i=1 ni ≥ n.

The cost of Step 2 is

m∑
i=1

O(n2i)

Notice that

k ≥
m∑
i=1

ni (ni − 1)/2 =

(
1

2

m∑
i=1

n2i

)
−

(
1

2

m∑
i=1

ni

)
.

We thus have

m∑
i=1

O(n2i) = O(n + k).

Grid Decomposition

25/26

Close Pairs in 2D: Analysis (Step 3)

We will prove that the cost of Step 3 is
∑m

i=1 O(n2i), and therefore,
bounded by O(n + k).

Let ci and cj be a pair of r -neighbor cells. Step 3 spends O(ni · nj) time
to process ci (P)× cj(P). Clearly:

ni · nj ≤ (n2i + n2j)/2.

Grid Decomposition

26/26

Close Pairs in 2D: Analysis (Step 3)

The total cost of Step 3 can be written as

O

 m∑
i=1

∑
j: cj is an r-neighbor of ci

(n2i + n2j)


which is bounded by O(

∑m
i=1 n

2
i) because a cell has O(1) r -neighbors.

We now conclude that the running time of our close-pairs algorithm is
O(n + k) expected.

Grid Decomposition

