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This lecture will introduce grid decomposition, which is a fundamental

technique for solving many computational geometry problems. We will

demonstrate the technique by using it to solve the closest pair and close

pairs problems.
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Closest Pair and Close Pairs

Let P be a set of points Rd . The objective of the closest pair
problem is to output a pair of distinct points p, q ∈ P that have
the smallest distance to each other, or formally:

dist(p, q) = min
p′, q′ ∈ P, p′ 6= q′

dist(p′, q′).

where dist(., .) represents the Euclidean distance of two points.

Let P be a set of points Rd and r a real value. The objective of
the close pairs problem is to output all pairs of distinct points
p, q ∈ P satisfying:

dist(p, q) ≤ r .
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Example: Closest Pair
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The answer is (p6, p8).
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Example: Close Pairs

Assume r = 4
√

2.
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The answer is {(p1, p4), (p1, p2), (p2, p3), (p2, p6), (p2, p4), ...}.
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Both problems can be easily solved in O(n2) time where n = |P|.
We will settle the closest pair problem in O(n log n) expected time
and the close pair problem in O(n + k) expected time, where k is
the number of pairs reported.
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Closest Pair in 2D

We will focus on 2D.

Divide P evenly using a vertical line `. Let P1 (or P2) be the set of
points on the left (or right) of `. Recursively find the closest pairs in P1

and P2, respectively.
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The closest pair of P1 is (p2, p3) and that of P2 is (p7, p8).
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Closest Pair in 2D

It remains to find the closest pair (p1, p2) satisfying p1 ∈ P1 and p2 ∈ P2

(i.e., p1, p2 come from different sides). Call it the crossing closest pair.
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The crossing closest pair is (p6, p8). The global closest pair must be

among the two “local” pairs (p2, p3), (p7, p8), and the crossing pair

(p6, p8).
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Closest Pair in 2D

We now explain how to find the crossing closest pair. Let r1 be the
distance of the closest pair in P1 and r2 be the distance of the closest
pair in P2. Define r = min{r1, r2}.
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In the above example, r1 =
√

8, r2 = 3, and r = min{r1, r2} =
√

8.

Observation: We care about the crossing closest pair only if its
distance is smaller than r .
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Closest Pair in 2D

Impose a grid G where (i) each cell is an axis-parallel square with side
length r/

√
2, and (ii) ` is a line in the grid.
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Each point p can be covered by at most 4 cells.
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Closest Pair in 2D

For each cell c , denote by c(P) the set of points in P covered by c .

Observation: For every c , |c(P)| ≤ 2 = O(1)!

Proof: The diagonal of c has length r . Convince yourself that c covering
more than 2 points would contradict the definition of r .
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Closest Pair in 2D

Group the points by the cells they belong. A cell is non-empty if it
covers at least one point. There can be at most 4n non-empty cells.
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In the above example, there are 25 non-empty cells.
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Closest Pair in 2D

Each cell can be uniquely identified by its centroid’s coordinates, which
we refer to as the cell’s id. For each cell c , we create a linked list
containing all the points in c(P) (i.e., the set of points covered by c).
This can be done using hashing in O(n) expected time.
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Closest Pair in 2D

Let c1, c2 be two non-empty cells. We say that c1 is an r-neighbor
of c2 (and vice versa) if their mindist is at most r .

To find a crossing closest pair within distance r , it suffices to consider
non-empty cells c1, c2 satisfying (i) c1 is on the left of `, and c2 is on the
right, and (ii) c1 and c2 are r -neighbors.
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For example, we need to consider
the cell pair (5, 11), but not (5,
15).
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Closest Pair in 2D

Observation: Each non-empty cell c on the left of ` has O(1)
r -neighbor cells on the right of `.
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For example, for Cell 8, we need to consider 8 pairs: (8, 10), (8, 11), (8,

12), (8, 13), (8, 14), (8, 15), (8, 16), (8, 17).
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Closest Pair in 2D

The above discussion motivates the following algorithm for finding a
crossing closest pair within distance r :

1. for every non-empty cell c1 on the left of `
2. for every r -neighbor cell c2 of c1 on the right of `
3. calculate the distance of each pair of

points (p1, p2) ∈ c1(P)× c2(P)
4. return the closest one among all the pairs inspected at Line 3, if the

pair has distance at most r .

As mentioned, for each c1, there are O(1) cells c2 to consider. Since
c1(P) and c2(P) each contain at most 2 points, each execution of Line 3
takes only O(1) time. The overall algorithm takes O(n) expected time in
total.

Think: How to find the cells c2 for each c1 in O(1) expected time?
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Closest Pair in 2D: Analysis

Let f (n) be the expected running time of our algorithm, it follows that

f (n) ≤ 2 · f (n/2) + O(n)

while f (n) = O(1) for n ≤ 2.

The recurrence solves to f (n) = O(n log n).

Grid Decomposition



18/26

In the closest-pair problem, we utilized the property that each cell
in the grid has O(1) r -neighbor cells.

We now proceed to tackle the close-pairs problem by using the
same property. Recall that our objective is to achieve O(n + k)
expected time, where k is the number of pairs reported.
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Recall the definition of the close-pairs problem.

Let P be a set of distinct points Rd and r a real value. The objective
is to output all pairs of distinct points p, q ∈ P satisfying:

dist(p, q) ≤ r .

We will again focus on 2D space.
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Close Pairs in 2D

We will explain the algorithm using the same dataset and r = 4
√

2.
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Step 1: Impose an arbitrary grid where each square cell has side length

r/
√

2 = 4. Identify all the non-empty cells.
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Close Pairs in 2D

Step 2: For each cell c , let c(P) be the set of points covered by c .
Simply report all pairs of distinct points in c(P) — notice that any two
points in the same cell must have distance at most r .
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For example, 1 pair is reported for Cell 1, and 3 pairs for Cell 8.
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Close Pairs in 2D

Step 3: For each cell c1, identify all of its r -neighbor cells c2. For every
c2, inspect all pairs of distinct points (p1, p2) ∈ c1(P)× c2(P), and
report the ones within distance at most r .
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For example, from Cells 2 and 4, inspect all the 8 pairs in

{p2, p3} × {p4, p6, p7, p8}, and report (p2, p4), (p2, p6), (p3, p6).
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Close Pairs in 2D: Analysis

Next, we will prove that our algorithm runs in O(n + k) expected time.
At first glance, this may look surprising. Recall that in Step 3, for each
pair of r -neighbor cells (c1, c2), we spend a quadratic amount of time
O(|c1(P)||c2(P)|), but risk finding no answer pairs at all. Indeed, the
core of the analysis is to show that the total time of doing so is bounded
by O(n + k).

We will focus on Steps 2 and 3 because Step 1 obviously takes O(n)

expected time (hashing).
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Close Pairs in 2D: Analysis (Step 2)

Let c1, c2, ..., cm be the non-empty cells, for some m ≥ 1. Define
ni = |ci (P)|, namely, the number of points covered by ci , for each
i ∈ [1,m]. Clearly

∑m
i=1 ni ≥ n.

The cost of Step 2 is

m∑
i=1

O(n2i )

Notice that

k ≥
m∑
i=1

ni (ni − 1)/2 =

(
1

2

m∑
i=1

n2i

)
−

(
1

2

m∑
i=1

ni

)
.

We thus have

m∑
i=1

O(n2i ) = O(n + k).

Grid Decomposition



25/26

Close Pairs in 2D: Analysis (Step 3)

We will prove that the cost of Step 3 is
∑m

i=1 O(n2i ), and therefore,
bounded by O(n + k).

Let ci and cj be a pair of r -neighbor cells. Step 3 spends O(ni · nj) time
to process ci (P)× cj(P). Clearly:

ni · nj ≤ (n2i + n2j )/2.
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Close Pairs in 2D: Analysis (Step 3)

The total cost of Step 3 can be written as

O

 m∑
i=1

∑
j: cj is an r-neighbor of ci

(n2i + n2j )


which is bounded by O(

∑m
i=1 n

2
i ) because a cell has O(1) r -neighbors.

We now conclude that the running time of our close-pairs algorithm is
O(n + k) expected.
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