Grid Decomposition

Yufei Tao

CSE Dept Chinese University of Hong Kong

Grid Decomposition

э

1/26

イロト イボト イヨト イヨト

This lecture will introduce grid decomposition, which is a fundamental technique for solving many computational geometry problems. We will demonstrate the technique by using it to solve the closest pair and close pairs problems.

A (1) > (1)

Closest Pair and Close Pairs

Let P be a set of points \mathbb{R}^d . The objective of the **closest pair problem** is to output a pair of distinct points $p, q \in P$ that have the smallest distance to each other, or formally:

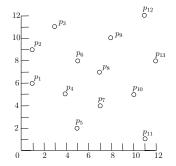
$$dist(p,q) = \min_{p', q' \in P, p' \neq q'} dist(p',q').$$

where dist(.,.) represents the Euclidean distance of two points.

Let *P* be a set of points \mathbb{R}^d and *r* a real value. The objective of the **close pairs problem** is to output all pairs of distinct points $p, q \in P$ satisfying:

$$dist(p,q) \leq r$$
.

Example: Closest Pair



æ

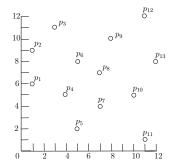
4/26

Grid Decomposition

Image: A matching of the second se

The answer is (p_6, p_8) .

Assume
$$r = 4\sqrt{2}$$
.



The answer is $\{(p_1, p_4), (p_1, p_2), (p_2, p_3), (p_2, p_6), (p_2, p_4), ...\}$.

Grid Decomposition

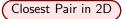
æ

5/26

< 口 > < 同 >

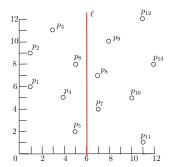
Both problems can be easily solved in $O(n^2)$ time where n = |P|. We will settle the closest pair problem in $O(n \log n)$ expected time and the close pair problem in O(n + k) expected time, where k is the number of pairs reported.

Image: A = A = A



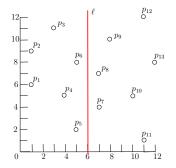
We will focus on 2D.

Divide *P* evenly using a vertical line ℓ . Let P_1 (or P_2) be the set of points on the left (or right) of ℓ . Recursively find the closest pairs in P_1 and P_2 , respectively.

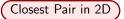


The closest pair of P_1 is (p_2, p_3) and that of P_2 is (p_7, p_8) .

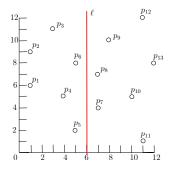
It remains to find the closest pair (p_1, p_2) satisfying $p_1 \in P_1$ and $p_2 \in P_2$ (i.e., p_1, p_2 come from different sides). Call it the **crossing** closest pair.



The crossing closest pair is (p_6, p_8) . The global closest pair must be among the two "local" pairs (p_2, p_3) , (p_7, p_8) , and the crossing pair (p_6, p_8) .



We now explain how to find the crossing closest pair. Let r_1 be the distance of the closest pair in P_1 and r_2 be the distance of the closest pair in P_2 . Define $r = \min\{r_1, r_2\}$.



In the above example, $r_1 = \sqrt{8}$, $r_2 = 3$, and $r = \min\{r_1, r_2\} = \sqrt{8}$.

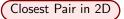
Observation: We care about the crossing closest pair only if its distance is smaller than r.

Impose a grid G where (i) each cell is an axis-parallel square with side length $r/\sqrt{2}$, and (ii) ℓ is a line in the grid.



Each point p can be covered by at most 4 cells.

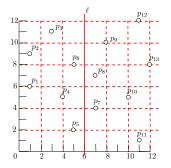
Grid Decomposition



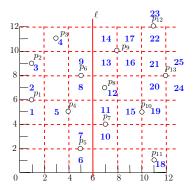
For each cell c, denote by c(P) the set of points in P covered by c.

Observation: For every
$$c$$
, $|c(P)| \le 2 = O(1)!$

Proof: The diagonal of *c* has length *r*. Convince yourself that *c* covering more than 2 points would contradict the definition of *r*. \Box

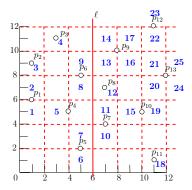


Group the points by the cells they belong. A cell is **non-empty** if it covers at least one point. There can be at most 4n non-empty cells.



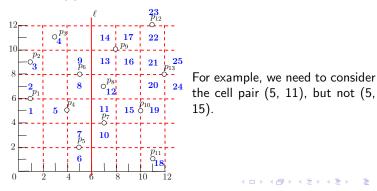
In the above example, there are 25 non-empty cells.

Each cell can be uniquely identified by its centroid's coordinates, which we refer to as the cell's **id**. For each cell c, we create a linked list containing all the points in c(P) (i.e., the set of points covered by c). This can be done using hashing in O(n) expected time.



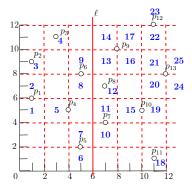
Let c_1, c_2 be two non-empty cells. We say that c_1 is an *r*-neighbor of c_2 (and vice versa) if their mindist is at most *r*.

To find a crossing closest pair within distance r, it suffices to consider non-empty cells c_1, c_2 satisfying (i) c_1 is on the left of ℓ , and c_2 is on the right, and (ii) c_1 and c_2 are r-neighbors.



Grid Decomposition

Observation: Each non-empty cell c on the left of ℓ has O(1) r-neighbor cells on the right of ℓ .



For example, for Cell 8, we need to consider 8 pairs: (8, 10), (8, 11), (8, 12), (8, 13), (8, 14), (8, 15), (8, 16), (8, 17).

Grid Decomposition

The above discussion motivates the following algorithm for finding a crossing closest pair within distance r:

- 1. for every non-empty cell c_1 on the left of ℓ
- 2. **for** every *r*-neighbor cell c_2 of c_1 on the right of ℓ
- 3. calculate the distance of each pair of points $(p_1, p_2) \in c_1(P) \times c_2(P)$
- 4. **return** the closest one among all the pairs inspected at Line 3, if the pair has distance at most *r*.

As mentioned, for each c_1 , there are O(1) cells c_2 to consider. Since $c_1(P)$ and $c_2(P)$ each contain at most 2 points, each execution of Line 3 takes only O(1) time. The overall algorithm takes O(n) expected time in total.

Think: How to find the cells c_2 for each c_1 in O(1) expected time?

< 回 > < 回 > < 回 >

Closest Pair in 2D: Analysis

Let f(n) be the expected running time of our algorithm, it follows that

$$f(n) \leq 2 \cdot f(n/2) + O(n)$$

while f(n) = O(1) for $n \leq 2$.

The recurrence solves to $f(n) = O(n \log n)$.

17/26

(日)

In the closest-pair problem, we utilized the property that each cell in the grid has O(1) *r*-neighbor cells.

We now proceed to tackle the close-pairs problem by using the same property. Recall that our objective is to achieve O(n + k) expected time, where k is the number of pairs reported.

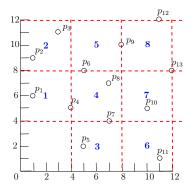
Recall the definition of the close-pairs problem.

Let P be a set of distinct points \mathbb{R}^d and r a real value. The objective is to output all pairs of distinct points $p, q \in P$ satisfying:

 $dist(p,q) \leq r.$

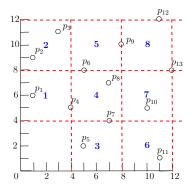
We will again focus on 2D space.

We will explain the algorithm using the same dataset and $r = 4\sqrt{2}$.



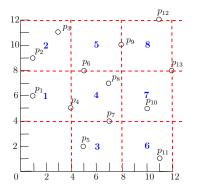
Step 1: Impose an arbitrary grid where each square cell has side length $r/\sqrt{2} = 4$. Identify all the non-empty cells.

Step 2: For each cell c, let c(P) be the set of points covered by c. Simply report all pairs of distinct points in c(P) — notice that any two points in the same cell must have distance at most r.



For example, 1 pair is reported for Cell 1, and 3 pairs for Cell 8.

Step 3: For each cell c_1 , identify all of its *r*-neighbor cells c_2 . For every c_2 , inspect all pairs of distinct points $(p_1, p_2) \in c_1(P) \times c_2(P)$, and report the ones within distance at most *r*.



For example, from Cells 2 and 4, inspect all the 8 pairs in $\{p_2, p_3\} \times \{p_4, p_6, p_7, p_8\}$, and report $(p_2, p_4), (p_2, p_6), (p_3, p_6)$.

Close Pairs in 2D: Analysis

Next, we will prove that our algorithm runs in O(n + k) expected time. At first glance, this may look surprising. Recall that in Step 3, for each pair of *r*-neighbor cells (c_1, c_2) , we spend a quadratic amount of time $O(|c_1(P)||c_2(P)|)$, but risk finding no answer pairs at all. Indeed, the core of the analysis is to show that the total time of doing so is bounded by O(n + k).

We will focus on Steps 2 and 3 because Step 1 obviously takes O(n) expected time (hashing).

Close Pairs in 2D: Analysis (Step 2)

Let $c_1, c_2, ..., c_m$ be the non-empty cells, for some $m \ge 1$. Define $n_i = |c_i(P)|$, namely, the number of points covered by c_i , for each $i \in [1, m]$. Clearly $\sum_{i=1}^m n_i \ge n$.

The cost of Step 2 is

$$\sum_{i=1}^m O(n_i^2)$$

Notice that

$$k \geq \sum_{i=1}^{m} n_i(n_i-1)/2 = \left(\frac{1}{2}\sum_{i=1}^{m} n_i^2\right) - \left(\frac{1}{2}\sum_{i=1}^{m} n_i\right).$$

We thus have

$$\sum_{i=1}^m O(n_i^2) = O(n+k).$$

Grid Decomposition

24/26

< □ > < □ >

Close Pairs in 2D: Analysis (Step 3)

We will prove that the cost of Step 3 is $\sum_{i=1}^{m} O(n_i^2)$, and therefore, bounded by O(n+k).

Let c_i and c_j be a pair of *r*-neighbor cells. Step 3 spends $O(n_i \cdot n_j)$ time to process $c_i(P) \times c_j(P)$. Clearly:

$$n_i \cdot n_j \leq (n_i^2 + n_j^2)/2.$$

25/26

▲ 同 ▶ → 三 ▶

Close Pairs in 2D: Analysis (Step 3)

The total cost of Step 3 can be written as

$$O\left(\sum_{i=1}^{m}\sum_{j: c_j \text{ is an } r ext{-neighbor of } c_i}(n_i^2+n_j^2)
ight)$$

which is bounded by $O(\sum_{i=1}^{m} n_i^2)$ because a cell has O(1) *r*-neighbors. We now conclude that the running time of our close-pairs algorithm is O(n+k) expected.

26/26

< □ > < □ >