Dimensionality Reduction 1 — Maxima

Yufei Tao

CSE Dept Chinese University of Hong Kong

Yufei Tao [Dimensionality Reduction 1 — Maxima](#page-17-0)

э

 QQ

Many computational geometry problems are defined in Euclidean space \mathbb{R}^d where the dimensionality d is an arbitrarily large constant. Often times, a problem of dimensionality d can be reduced to the same problem of dimensionality $d - 1$ efficiently. Today, we will demonstrate this by solving the maxima problem in arbitrary dimensionality.

2/18

Review: The Maxima Problem

A point p_1 dominates p_2 if the coordinate of p_1 is larger than or equal to that of p_2 in all dimensions, and strictly larger in at least one dimension.

Let P be a set of points in \mathbb{R}^d . A point $p \in P$ is a maximal point of P if it is not dominated by any other point in P .

The maximal points are p_4 , p_5 , and p_{13} .

3/18

Input: A set $P \subseteq \mathbb{R}^d$ of size $n = |P|$. **Output:** All the maximal points of P.

We will solve the problem in $O(n\log^{d-1} n)$ time.

Remark: This week's exercises will guide you to improve the time to $O(n \log^{d-2} n)$ for $d \geq 3$.

ALCOHOL:

4/18

Dominance Screening

We will discuss a different problem:

Let P and Q be sets of d -dimensional points in \mathbb{R}^d . In dominance screening problem, we want to report all the points in Q that are not dominated by any points in P. Set $n = |P| + |Q|$.

Suppose that P (or Q) is the set of white (or red, resp.) points. The result is $\{q_2, q_4\}$.

母 > < ヨ > <

5/18

1D Dominance Screening

When $d = 1$, the problem can be easily solved in $O(n)$ time.

÷.

 QQ

 $\mathbf{A} \equiv \mathbf{A} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{A}$

First, divide the input into two halves by x-coordinate:

Let P_1 (Q_1) be the set of white (or red, resp.) points on the left half (i.e., $P_1 = \{p_1, p_2, p_3\}$ and $Q_1 = \{q_1, q_2, q_3\}$). Define P_2 and Q_2 analogously with respect to the right half.

Yufei Tao [Dimensionality Reduction 1 — Maxima](#page-0-0)

イロト イ母 トイヨト

7/18

2D Dominance Screening

We have two instances of dominance screening: the first on P_1, Q_1 , and the other on P_2 , Q_2 .

Solve each instance recursively. The left instance reports q_2, q_3 , and the right instance reports q_4 . Next, we will merge the two answers to obtain the final result.

 \rightarrow \equiv \rightarrow

8/18

Observation 1: The right answer is definitely in the final result. **Observation 2:** Let q be a point in the left answer. It is in the final result if and only if it is not dominated by any white point from the right instance.

Yufei Tao [Dimensionality Reduction 1 — Maxima](#page-0-0)

イロト イ母 トイミト

9/18

 QQ

We now resort to 1D dominance screening.

Let A_{left} be the left answer. Construct a 1D dominance screening problem with input sets P', Q' where

- P' : obtained by projecting P_2 onto the y-axis
- Q' : obtained by projecting A_{left} onto the y-axis.

10/18

2D Dominance Screening

Let us now analyze the running time. Let $f(n)$ be the time on $n = |P| + |Q|$ points. We have:

$$
f(n) \leq 2 \cdot f(n/2) + O(n)
$$

For $n \le 2$, $f(n) = O(1)$.

Solving the recurrence gives: $f(n) = O(n \log n)$.

÷. Ω

イロト イ押 トイラト イラト

Dominance Screening in d-dimensional Space

- 1. Divide $P ∪ Q$ into two equal halves by the first dimension. This yields two instances of d -dimensional dominance screening: (i) left instance P_1 , Q_1 , and (ii) right instance P_2 , Q_2 .
- 2. Solve the left and right instances, recursively. Let A_{left} and A_{right} be their answers, respectively.
- 3. Obtain a $(d-1)$ -dimensional dominance screening problem P', Q' where P^{\prime} (or $Q^{\prime})$ is the projection of P_2 (or A_{left} , resp.) onto dimensions $2, 3, ..., d$. Solve this instance to obtain its answer A' .
- 4. Return $A_{right} \cup A'$.

 $(0,1)$ $(0,1)$ $(0,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$ $(1,1)$

12/18

Dominance Screening in d-dimensional Space

Let us analyze the running time. Let $f(n)$ be the time on *n* points.

$$
f(n) \leq 2 \cdot f(n/2) + g(n)
$$

where $g(n)$ is the time of solving $(d-1)$ -dimensional dominance screening. Solving the recurrence gives:

when $d=3$, $f(n)=O(n\log^2 n)$;

• when
$$
d = 4
$$
, $f(n) = O(n \log^3 n)$;

 \bullet ...

$$
\bullet \text{ in general, } f(n) = O(n \log^{d-1} n).
$$

÷. Ω

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

2D Maxima

We now attack the maxima problem. First, divide the input set into two halves by x-coordinate:

Let P_1 (or P_2) be the set of points on the left (or right, resp.) half.

4. 17. 18.

Yufei Tao [Dimensionality Reduction 1 — Maxima](#page-0-0)

Ξ

14/18

Recursively find the maximal points of P_1 and P_2 .

The left instance returns $A_{\text{left}} = \{p_2, p_3, p_9\}$, and the right one returns $A_{right} = \{p_5, p_4, p_{13}\}\.$ The points in A_{right} must be in the final result.

Yufei Tao [Dimensionality Reduction 1 — Maxima](#page-0-0)

ミドイミド

15/18

2D Maxima

Observation: Let q be a point in A_{left} . It is in the final result if and only if it is not dominated by any point in A_{right} .

Clearly, now it suffices to solve a 1D dominance screening problem on A_{left} and A_{right} .

 $\mathcal{A} \cap \mathcal{B} \rightarrow \mathcal{A} \ni \mathcal{B} \rightarrow \mathcal{A} \ni \mathcal{B} \rightarrow \mathcal{B}$

16/18

2D Maxima

Let us now analyze the running time of our algorithm. Let $f(n)$ be the time on $n = |P| + |Q|$ points. We have:

$$
f(n) \leq 2 \cdot f(n/2) + O(n)
$$

Solving the recurrence gives: $f(n) = O(n \log n)$.

Yufei Tao [Dimensionality Reduction 1 — Maxima](#page-0-0)

÷. η an

 $A \equiv \mathbf{1} + \mathbf{1} \oplus \mathbf{1} + \mathbf{1} \oplus \mathbf{1} + \mathbf{1} \oplus \mathbf{1} + \mathbf{1}$

Maxima in d-dimensional Space

We can solve the d -dimensional maxima problem in $O(n\log^{d-1} n)$ time with a reduction to $(d-1)$ -dimensional dominance screening. The details should have become straightforward.

重 η an

イロト イ押 トイラト イラト