Dimensionality Reduction 1 — Maxima

Yufei Tao

CSE Dept Chinese University of Hong Kong

Yufei Tao

Dimensionality Reduction 1 — Maxima

э

1/18

イロト イボト イヨト イヨト

Many computational geometry problems are defined in Euclidean space \mathbb{R}^d where the dimensionality d is an arbitrarily large constant. Often times, a problem of dimensionality d can be reduced to the same problem of dimensionality d-1 efficiently. Today, we will demonstrate this by solving the maxima problem in arbitrary dimensionality.

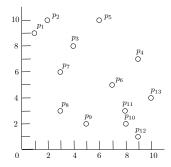
2/18

イロト イポト イラト イラト

Review: The Maxima Problem

A point p_1 dominates p_2 if the coordinate of p_1 is larger than or equal to that of p_2 in all dimensions, and strictly larger in at least one dimension.

Let P be a set of points in \mathbb{R}^d . A point $p \in P$ is a maximal point of P if it is not dominated by any other point in P.



The maximal points are p_4 , p_5 , and p_{13} .

Input: A set $P \subseteq \mathbb{R}^d$ of size n = |P|. **Output:** All the maximal points of P.

We will solve the problem in $O(n \log^{d-1} n)$ time.

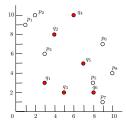
Remark: This week's exercises will guide you to improve the time to $O(n \log^{d-2} n)$ for $d \ge 3$.

4/18

We will discuss a different problem:

Yufei Tao

Let *P* and *Q* be sets of *d*-dimensional points in \mathbb{R}^d . In dominance screening problem, we want to report all the points in *Q* that are not dominated by any points in *P*. Set n = |P| + |Q|.



Suppose that P (or Q) is the set of white (or red, resp.) points. The result is $\{q_2, q_4\}$.

5/18

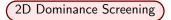
- E - E

When d = 1, the problem can be easily solved in O(n) time.

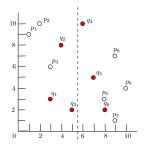
э

6/18

イロト イボト イヨト イヨト



First, divide the input into two halves by x-coordinate:

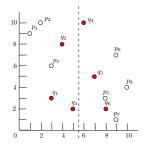


Let P_1 (Q_1) be the set of white (or red, resp.) points on the left half (i.e., $P_1 = \{p_1, p_2, p_3\}$ and $Q_1 = \{q_1, q_2, q_3\}$). Define P_2 and Q_2 analogously with respect to the right half.

7/18

A (1) < A (1) </p>

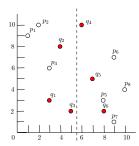
We have two instances of dominance screening: the first on P_1 , Q_1 , and the other on P_2 , Q_2 .



Solve each instance recursively. The left instance reports q_2 , q_3 , and the right instance reports q_4 . Next, we will merge the two answers to obtain the final result.

A 3 b

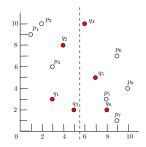
Observation 1: The right answer is definitely in the final result. **Observation 2:** Let q be a point in the left answer. It is in the final result if and only if it is not dominated by any white point from the right instance.



Dimensionality Reduction 1 — Maxima

9/18

We now resort to 1D dominance screening.



Let A_{left} be the left answer. Construct a 1D dominance screening problem with input sets P', Q' where

- P': obtained by projecting P_2 onto the y-axis
- Q': obtained by projecting A_{left} onto the y-axis.

Let us now analyze the running time. Let f(n) be the time on n = |P| + |Q| points. We have:

$$f(n) \leq 2 \cdot f(n/2) + O(n)$$

For $n \le 2$, f(n) = O(1).

Solving the recurrence gives: $f(n) = O(n \log n)$.

-

11/18

Dominance Screening in *d*-dimensional Space

- Divide P ∪ Q into two equal halves by the first dimension. This yields two instances of d-dimensional dominance screening: (i) left instance P₁, Q₁, and (ii) right instance P₂, Q₂.
- 2. Solve the left and right instances, recursively. Let A_{left} and A_{right} be their answers, respectively.
- Obtain a (d 1)-dimensional dominance screening problem P', Q' where P' (or Q') is the projection of P₂ (or A_{left}, resp.) onto dimensions 2, 3, ..., d. Solve this instance to obtain its answer A'.
- 4. Return $A_{right} \cup A'$.

12/18

・ 同 ト ・ 王 ト ・ 王 ト

Dominance Screening in *d*-dimensional Space

Let us analyze the running time. Let f(n) be the time on n points.

$$f(n) \leq 2 \cdot f(n/2) + g(n)$$

where g(n) is the time of solving (d-1)-dimensional dominance screening. Solving the recurrence gives:

• when d = 3, $f(n) = O(n \log^2 n)$;

• when
$$d = 4$$
, $f(n) = O(n \log^3 n)$;

• ...

• in general,
$$f(n) = O(n \log^{d-1} n)$$
.

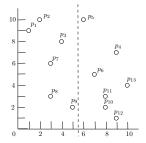
-

13/18

ヘロン ヘ団 と ヘヨン ヘロン

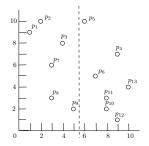
2D Maxima

We now attack the maxima problem. First, divide the input set into two halves by x-coordinate:



Let P_1 (or P_2) be the set of points on the left (or right, resp.) half.

Recursively find the maximal points of P_1 and P_2 .



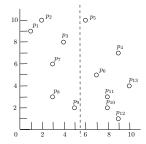
The left instance returns $A_{left} = \{p_2, p_3, p_9\}$, and the right one returns $A_{right} = \{p_5, p_4, p_{13}\}$. The points in A_{right} must be in the final result.

15/18

3 N

2D Maxima

Observation: Let q be a point in A_{left} . It is in the final result if and only if it is not dominated by any point in A_{right} .



Clearly, now it suffices to solve a 1D dominance screening problem on A_{left} and A_{right} .

A I > A I > A

-

2D Maxima

Let us now analyze the running time of our algorithm. Let f(n) be the time on n = |P| + |Q| points. We have:

$$f(n) \leq 2 \cdot f(n/2) + O(n)$$

Solving the recurrence gives: $f(n) = O(n \log n)$.

-

17/18

・ロト ・ 雪 ト ・ ヨ ト ・

Maxima in *d*-dimensional Space

We can solve the *d*-dimensional maxima problem in $O(n \log^{d-1} n)$ time with a reduction to (d-1)-dimensional dominance screening. The details should have become straightforward.

18/18

・ 同 ト ・ ヨ ト ・ ヨ ト