Dimensionality Reduction 2 — Rectangle-Point Containment

Yufei Tao

CSE Dept Chinese University of Hong Kong

Yufei Tao

Dimensionality Reduction 2 — Rectangle-Point Containment

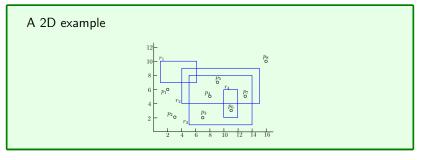
3

1/12

イロト イボト イヨト イヨト

Problem

Let *R* be a set of axis-parallel rectangles and *P* be a set of points, all in \mathbb{R}^d , where *d* is a fixed constant. We want to report all pairs of $(r, p) \in R \times P$ such that *r* contains *p*.



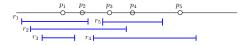
We will show how to solve the problem in $O(n \operatorname{polylog} n + k)$ where n = |R| + |P| and k is the number of pairs reported.

Dimensionality Reduction 2 — Rectangle-Point Containment

2/12

(周) () () () () ()

When d = 1, R is a set of intervals and P a set of points, both in \mathbb{R} .



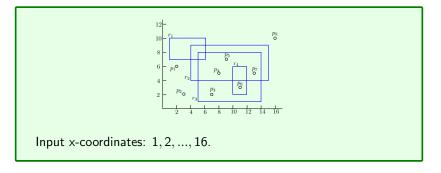
It is easy to settle the problem in $O(n \log n + k)$ time.

3/12

イロト 不得 とくき とくき とうきょう

Every rectangle in R defines at most two x-coordinates, and each point in P defines one x-coordinate.

Call those coordinates the input x-coordinates.



э

4/12

- 4 目 ト 4 日 ト

A left-open or right-open rectangle defines only one input x-coordinate.

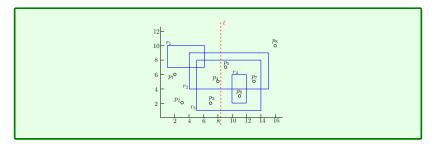
Dimensionality Reduction 2 — Rectangle-Point Containment

э.

5/12

イロト (行) (モ) (モ)

Divide the input x-coordinates in half with a vertical line ℓ .



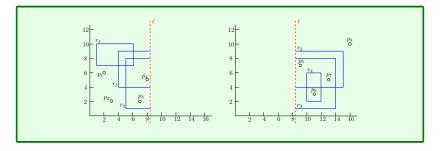
Dimensionality Reduction 2 — Rectangle-Point Containmer

Ξ.

6/12

イロト イボト イヨト イヨト

The line ℓ creates two sub-problems.



Note that each sub-problem can contain left-open or right-open rectangles. No new input x-coordinates are created.

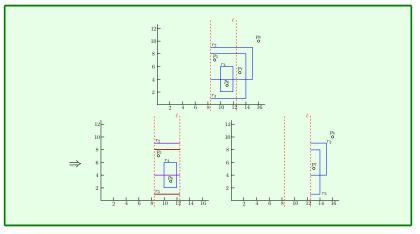
3.5 Dimensionality Reduction 2 — Rectangle-Point Containment

э

7/12

A (1) < A (

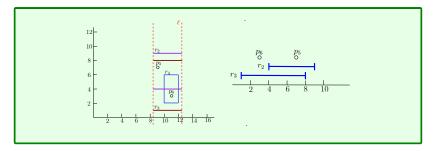
Divide the right sub-problem into two sub-sub-problems:



Issue: In the first sub-sub-problem, r_2 and r_3 define no input x-coordinates. Thus, we **cannot** solve the sub-sub-problem recursively (think: why).

8/12

Dealing with the issue: solve a 1D instance of the problem on the y-dimension and get rid of such rectangles.



ヨート Dimensionality Reduction 2 — Rectangle-Point Containmer

э

9/12

▲ 同 ▶ ▲ 三 ▶ ▲

The 2D Algorithm

- Let *R_{span}* be the set of rectangles that do not define input x-coordinates (they span the current data space in x-dimension).
- 2. Solve a 1D instance on R' and P' where R' and P' are obtained by projecting R_{span} and P onto the y-axis, respectively.
- 3. Divide the input x-coordinates equally with a vertical line ℓ .
- Let R₁ (or R₂) be the set of rectangles in R that intersect with the left (or right, resp.) side of l. Let P₁ (or P₂) be the set of points in P that fall on the left (or right, resp.) side of l.
- 5. Solve the left sub-problem with inputs R_1 , P_1 and the right sub-problem with inputs R_2 , P_2 .

10/12

・ 同 ト ・ ヨ ト ・ ヨ ト

2D Analysis

Let f(m) be the running time of our algorithm when there are m input x-coordinates.

$$f(m) \leq 2 \cdot f(m/2) + g(m)$$

where g(m) is the cost of solving a 1D instance of size m.

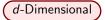
We know that $g(m) = O(m \log m + k')$ (where k' is the number of pairs reported by the 1D instance). Solving the recurrence gives $f(m) = O(m \log^2 m + k)$.

As $m \leq 2n$, we now have an algorithm of $O(n \log^2 n + k)$ time.

Remark: In this week's exercises, you will be guided to improve the running time to $O(n \log n + k)$.

11/12

伺下 イヨト イヨト



In general, we can use a (d-1)-dimensional algorithm to solve the *d*-dimensional problem. It will be left as an exercise to design a *d*-dimensional algorithm in O(n polylog n + k) time.

I NOR

12/12

ヘロト ヘヨト ヘヨト ・ヨト