

香港中文大學 The Chinese University of Hong Kong

Design for Manufacturability: From Layout To Chip

Bei Yu

Department of Computer Science & Engineering Chinese University of Hong Kong byu@cse.cuhk.edu.hk

November 19, 2022

Year

Moore's Law to Extreme Scaling

Apple A7 (2013)

- 1,000,000 K Transistors
- 102*mm*² die size
- 1.3GHz

Apple A10 (2016)

- 3,300,000 K Transistors
- 125*mm*² die size
- 2.34GHz

Apple A16 (2022)

- 16,000,000 K Transistors
- 108*mm*² die size
- 3.46GHz

128MB

2014

2020

Micron

1TB

@ 3 A2

Memory Card Scaling

Detailed View of Layout

Manufacturability Status & Challenges

From Layout to Chip

1 Design Rule Checking (DRC)

2 Hotspot Detection

Design Rule Checking (DRC)

DRC: Introduction

The three basic DRC checks

- Minimum area
- Shorts violation

• ...

End of Line spacing

• DRC count increases by 20-30% every node.

- Improving DRC rules: "large" as well as "small".
 - Conducted in foundaries.
- Reduces to DL tasks: classification, detection...
- Improving DRC efficiency: current single full-chip DRC takes hours to days.
 - Conducted in design companies and EDA vendors.

- Improving DRC rules: "large" as well as "small".
 - Conducted in foundaries.
- Reduces to DL tasks: classification, detection...
- Improving DRC efficiency: current single full-chip DRC takes hours to days.
 - Conducted in design companies and EDA vendors.
 - e.g. GPU acceleration

Problem (Distance Check (informal))

- Layout: a set of axis-parallel polygonal objects
- Distance rule: any two edges must not be closer than a predefined minimal distance
- *Distance violation: a pair of edges in the layout that violate the distance rule*
- Our task: report all the distance violations

(We only consider horizontal edges.)

Problem (Distance Check)

Given a set \mathcal{H} of horizontal segments in \mathbb{R}^2 , report the segment pairs from \mathcal{H}^2 whose horizontal projection is nonempty, and vertical distance is smaller than δ . Formally, we want to report:

 $\{ ([l_1, r_1] \times y_1, [l_2, r_2] \times y_2) \in \mathcal{H}^2 \}$ s.t. $[l_1, r_1] \cap [l_2, r_2] \neq \emptyset, |y_1 - y_2| < \delta$

Main Idea:

Decompose a problem by the 'simple' direction for parallelism, and leave the 'complex' work to each individual processor.

Docian	Layer	#Tilos	#Polygons	#Edges	#Edgo/Polygon	Width Check Time (s)		
Design		#11105	#1 Olygons		#Edge/101yg01	KLayout	X-Check	Speedup
1	Metal1	1	391	24440	62.5	< 0.1	0.1	-
gca	Metal2	1	1229	4916	4.0	< 0.1	< 0.1	-
aes	Metal1	16	17739	2059906	116.1	2.9	3.0	0.97×
	Metal2	16	76007	304028	4.0	0.2	0.1	-
bp_be	Metal1	56	34747	27245522	784.1	21.9	19.3	1.13×
	Metal2	56	393834	1575336	4.0	0.4	0.4	-
bp	Metal1	144	107706	52595418	488.3	38.9	33.0	$1.18 \times$
	Metal2	144	833588	3334352	4.0	0.9	0.9	-
Average								1.09×

¹Zhuolun He, Yuzhe Ma, and Bei Yu (2022). "X-Check: GPU-Accelerated Design Rule Checking via Parallel Sweepline Algorithms". In: *Proc. ICCAD*. 18/56

Docian	Layer	En	closing Ch	eck	Space Check			
Design		KLayout	X-Check	Speedup	KLayout	X-Check	Speedup	
gcd	Metal1	38.4	2.4	$16.00 \times$	12.6	2.4	5.25×	
	Metal2	2.5	2.5	$1.00 \times$	6.4	2.4	$2.67 \times$	
aes	Metal1	15470.4	12.3	$1257.76 \times$	4493.8	67.5	66.57×	
	Metal2	2227.0	14.5	$153.59 \times$	2778.5	9.9	$280.66 \times$	
bp_be	Metal1	66194.6	128.6	$514.73 \times$	6718.7	123.7	$54.31 \times$	
	Metal2	3089.2	147.4	$20.96 \times$	4171.5	16.6	$251.30 \times$	
bp	Metal1	98370.4	235.3	$418.06 \times$	14019.7	233.4	$60.07 \times$	
	Metal2	3958.7	276.6	$14.41 \times$	5164.4	65.9	$78.37 \times$	
Average				61.36×			$45.00 \times$	

²Zhuolun He, Yuzhe Ma, and Bei Yu (2022). "X-Check: GPU-Accelerated Design Rule Checking via Parallel Sweepline Algorithms". In: *Proc. ICCAD*. 1

Hotspot Detection

Challenge: Failure (Hotspot) Detection

- RET: OPC, SRAF, MPL
- Still hotspot: low fidelity patterns
- Simulations: extremely CPU intensive

Hotspot Detection Hierarchy

(Relative) CPU runtime at each level

- **Sampling** (DRC Checking): scan and rule check each region
- Hotspot Detection: verify the sampled regions and report potential hotspots
- Lithography Simulation: final verification on the reported hotspots

- Fast and accurate
- [Yu+,ICCAD'14] [Nosato+,JM3'14] [Su+,TCAD'15]
- Fuzzy pattern matching [Wen+,TCAD'14]
- Hard to detect non-seen pattern

Classification based Hotspot Detection

Classification based Hotspot Detection

- Predict new patterns
- Decision-tree, ANN, SVM, Boosting ...
- [Drmanac+,DAC'09] [Ding+,TCAD'12] [Yu+,JM3'15] [Matsunawa+,SPIE'15] [Yu+,TCAD'15]
- Hard to balance accuracy and false-alarm

First DNN Hotspot Detection Architecture³

- Total 21 layers with 13 convolution layers and 5 pooling layers.
- A **ReLU** is applied after each convolution layer.

³Haoyu Yang, Luyang Luo, et al. (2017). "Imbalance aware lithography hotspot detection: a deep learning approach". In: *JM3* 16.3, p. 033504. 26/56

Layer Visualization

Origin

	- 44 7 - 27	<u> 8.00</u> 00- 9>+		n refer amper	- độc Phác độc
		- 35 7 - 37	- 1 TA - 1 1		
21	t Ste Bergere			-	
- 19-1- - 17-1		$\frac{1}{1-1} \frac{\partial g_{\mu} e^{-i t}}{\partial t}$			
1-2 ⁴ 1-24	-	r.e., 	e typ te ca	1.15pt 1-1.1	

Pool2

	- 201	-		27	
39	- 1924	3	1.43 C	. F	
			5	<u>_</u>	
2	. 2	. Ar	1		
		 .	- 4,6	(11)	
	1999 177 m				

- (a) Density-based encoding [SPIE'15]⁴
- (b) Concentric circle sampling [ICCAD'16]⁵
- (c) Squish pattern [ASPDAC'19]⁶

⁵Hang Zhang, Bei Yu, and Evangeline F. Y. Young (2016). "Enabling Online Learning in Lithography Hotspot Detection with Information-Theoretic Feature Optimization". In: *Proc. ICCAD*, 47:1–47:8.

⁶Haoyu Yang, Piyush Pathak, et al. (2019). "Detecting multi-layer layout hotspots with adaptive squish patterns". In: *Proc. ASPDAC*, pp. 299–304. 29/56

⁴Tetsuaki Matsunawa et al. (2015). "A new lithography hotspot detection framework based on AdaBoost classifier and simplified feature extraction". In: *Proc. SPIE*. vol. 9427.

Feature Tensor Generation:

- Clip Partition
- Discrete Cosine Transform
- Discarding High Frequency Components
- Feature Tensor

⁷Haoyu Yang, Jing Su, et al. (2017). "Layout Hotspot Detection with Feature Tensor Generation and Deep Biased Learning". In: *Proc. DAC*, 62:1–62:6.

Feature Tensor Generation:

- Clip Partition
- Discrete Cosine Transform
- Discarding High Frequency Components
- Feature Tensor

⁷Haoyu Yang, Jing Su, et al. (2017). "Layout Hotspot Detection with Feature Tensor Generation and Deep Biased Learning". In: *Proc. DAC*, 62:1–62:6.

Feature Tensor Generation:

- Clip Partition
- Discrete Cosine Transform
- Discarding High Frequency Components
- Feature Tensor

⁷Haoyu Yang, Jing Su, et al. (2017). "Layout Hotspot Detection with Feature Tensor Generation and Deep Biased Learning". In: *Proc. DAC*, 62:1–62:6.

30/56

Simplified CNN Architecture [DAC'17]

Feature Tensor

- *k*-channel hyper-image
- Compatible with CNN
- Storage and computional efficiency

Layer	Kernel Size	Stride	Output Node #	
conv1-1	3	1	$12\times12\times16$	
conv1-2	3	1	$12\times12\times16$	
maxpooling1	2	2	6 imes 6 imes 16	
conv2-1	3	1	$6 \times 6 \times 32$	
conv2-2	3	1	$6 \times 6 \times 32$	
maxpooling2	2	2	$3 \times 3 \times 32$	
fc1	N/A	N/A	250	
fc2	N/A	N/A	2	

• Minimize difference with ground truths

$$m{y}_n^* = [1,0], \ m{y}_h^* = [0,1].$$

 $m{F} \in \left\{egin{array}{c} \mathcal{N}, & ext{if } m{y}(0) > 0.5, \\ \mathcal{H}, & ext{if } m{y}(1) > 0.5. \end{array}
ight.$

• Naive: Shifting decision boundary

$$\mathbf{F} \in \left\{ \begin{array}{ll} \mathcal{N}, & \text{if } \boldsymbol{y}(0) > 0.5 + \lambda, \\ \mathcal{H}, & \text{if } \boldsymbol{y}(1) > 0.5 - \lambda. \end{array} \right.$$

• Minimize difference with ground truths

$$m{y}_n^* = [1,0], \ m{y}_h^* = [0,1].$$

 $m{F} \in \left\{egin{array}{c} \mathcal{N}, & ext{if } m{y}(0) > 0.5, \\ \mathcal{H}, & ext{if } m{y}(1) > 0.5. \end{array}
ight.$

• Naive: Shifting decision boundary (X)

$$\mathbf{F} \in \left\{ \begin{array}{ll} \mathcal{N}, & \text{if } \boldsymbol{y}(0) > 0.5 + \lambda, \\ \mathcal{H}, & \text{if } \boldsymbol{y}(1) > 0.5 - \lambda. \end{array} \right.$$

• Biased ground truth:

$$\mathbf{y}_n^* = [1 - \epsilon, \epsilon].$$

Comparison with Previous Hotspot Detectors

• Detection accuracy improved from 89.6% to 95.5%

Comparison with Previous Hotspot Detectors

• Comparable false alarm penalty

Motivation

- In original space, the anchor is much similar to the negative
- After deep layout metric learning, in a new manifold, the two hotspot layout clips are kept apart from the non-hotspot clip

⁸Hao Geng, Haoyu Yang, et al. (2020). "Hotspot Detection via Attention-based Deep Layout Metric Learning". In: *Proc. ICCAD*.

Metric Feature Learning

- A triplet: $f_w(x_i), f_w(x_i^+), f_w(x_i^-)$
- $f_w(x_i)$: an anchor layout clip
- $f_w(x_i^+)$: sharing the same label with the anchor
- $f_w(x_i^-)$: having the opposite label to the anchor

$$\min_{w} \frac{1}{n} \sum_{i=1} \max(0, M + ||f_{w}(\mathbf{x}_{i}) - f_{w}(\mathbf{x}_{i}^{+})||_{2}^{2} - ||f_{w}(\mathbf{x}_{i}) - f_{w}(\mathbf{x}_{i}^{-})||_{2}^{2}) \tag{1}$$

s.t.
$$||f_w(\mathbf{x}_i)||_2^2 = 1, \ \forall (f_w(\mathbf{x}_i), f_w(\mathbf{x}_i^+), f_w(\mathbf{x}_i^-)) \in \mathcal{T}.$$
 (2)

Gradients Calculation:

$$\frac{\partial \mathcal{L}_{metric}(f_{w}(\mathbf{x}_{i}), f_{w}(\mathbf{x}_{i}^{+}), f_{w}(\mathbf{x}_{i}^{-}))}{\partial f_{w}(\mathbf{x}_{i}^{+})} = \frac{2}{n} \left(f_{w}(\mathbf{x}_{i}^{+}) - f_{w}(\mathbf{x}_{i}) \right) \\
\cdot \mathbf{1} \left(\mathcal{L}_{metric}(f_{w}(\mathbf{x}_{i}), f_{w}(\mathbf{x}_{i}^{+}), f_{w}(\mathbf{x}_{i}^{-})) > 0 \right), \qquad (3a)$$

$$\frac{\partial \mathcal{L}_{metric}(f_{w}(\mathbf{x}_{i}), f_{w}(\mathbf{x}_{i}^{+}), f_{w}(\mathbf{x}_{i}^{-}))}{\partial f_{w}(\mathbf{x}_{i}^{-})} = \frac{2}{n} \left(f_{w}(\mathbf{x}_{i}) - f_{w}(\mathbf{x}_{i}^{-}) \right) \\
\cdot \mathbf{1} \left(\mathcal{L}_{metric}(f_{w}(\mathbf{x}_{i}), f_{w}(\mathbf{x}_{i}^{+}), f_{w}(\mathbf{x}_{i}^{-})) > 0 \right), \qquad (3b)$$

$$\frac{\partial \mathcal{L}_{metric}(f_{w}(\mathbf{x}_{i}), f_{w}(\mathbf{x}_{i}^{+}), f_{w}(\mathbf{x}_{i}^{-})) > 0 \right), \qquad (3b)$$

$$\frac{\partial \mathcal{L}_{metric}(f_{w}(\mathbf{x}_{i}), f_{w}(\mathbf{x}_{i}^{+}), f_{w}(\mathbf{x}_{i}^{-})) > 0 \right), \qquad (3c)$$

where **1** is the indicator function which is defined as:

$$\mathbf{1}(x) = \begin{cases} 1 & \text{if x is true,} \\ 0 & \text{otherwise.} \end{cases}$$
(3d)

The t-SNE visualizations of feature embeddings on VIA

(a) The exemplars of hotspots and non-hotspots; (b) The DCT feature embeddings of TCAD'19; (c) The feature embeddings of our proposed framework.

HSD-Research: New Network Architecture

40/56

Region-based HSD [DAC'19]⁹

• Binarized residual neural network [DAC'19]¹⁰

⁹Ran Chen et al. (2019). "Faster Region-based Hotspot Detection". In: *Proc. DAC*, 146:1–146:6. ¹⁰Yiyang Jiang et al. (2019). "Efficient Layout Hotspot Detection via Binarized Residual Neural Network". In: *Proc. DAC*, 147:1–147:6.

Mask Optimization

Design target

Major Tools

Market Anually: USD 100M!

- 1 Calibre by Mentor Graphics
- 2 Brion Tool by ASML
- 3 IC Validator by Synopsys
- 4 Pegasus by Cadence

SVD Approximation of Partial Coherent System [Cobb,1998]

$$\mathbf{I} = \sum_{k=1}^{N^2} w_k |\mathbf{M} \otimes \mathbf{h}_k|^2.$$
(4)

• Reduced Model [Gao+,DAC'14]

$$\mathbf{I} = \sum_{k=1}^{N_h} w_k |\mathbf{M} \otimes \mathbf{h}_k|^2.$$
(5)

• Etch Model

$$\mathbf{Z}(x,y) = \begin{cases} 1, & \text{if } \mathbf{I}(x,y) \ge I_{th}, \\ 0, & \text{if } \mathbf{I}(x,y) < I_{th}. \end{cases}$$
(6)

Inverse Lithography Technique (ILT)

The main objective in ILT is minimizing the lithography error through gradient descent.

$$E = ||\mathbf{Z}_t - \mathbf{Z}||_2^2,\tag{7}$$

where \mathbf{Z}_t is the target and \mathbf{Z} is the wafer image of a given mask.

Apply translated sigmoid functions to make the pixel values close to either 0 or 1.

$$\mathbf{Z} = \frac{1}{1 + \exp[-\alpha \times (\mathbf{I} - \mathbf{I}_{th})]},$$

$$\mathbf{M}_{b} = \frac{1}{1 + \exp(-\beta \times \mathbf{M})}.$$
(8)
(9)

Combine Equations (4)–(9) and the analysis in [Poonawala,TIP'07],

$$\frac{\partial E}{\partial \mathbf{M}} = 2\alpha\beta \times \mathbf{M}_b \odot (1 - \mathbf{M}_b) \odot$$

$$(((\mathbf{Z} - \mathbf{Z}_t) \odot \mathbf{Z} \odot (1 - \mathbf{Z}) \odot (\mathbf{M}_b \otimes \mathbf{H}^*)) \otimes \mathbf{H} +$$

$$((\mathbf{Z} - \mathbf{Z}_t) \odot \mathbf{Z} \odot (1 - \mathbf{Z}) \odot (\mathbf{M}_b \otimes \mathbf{H})) \otimes \mathbf{H}^*). \tag{10}$$

$$46/56$$

Typical ILT

- Mask \rightarrow Image \rightarrow Matrix
- Calculate gradient on each pixel.

Level-set method

- Boundary-based update
- Implicit representation; focus on boundaries

$$\left\{ \begin{array}{ll} \phi(t, \mathbf{x}) < 0 & \text{ if } \mathbf{x} \in \Omega(t) \\ \phi(t, \mathbf{x}) = 0 & \text{ if } \mathbf{x} \in \overline{\Gamma(t)} \\ \phi(t, \mathbf{x}) > 0 & \text{ if } \mathbf{x} \in \overline{\Omega(t)} \end{array} \right.$$

¹Jhih-Rong Gao et al. (2014). "MOSAIC: Mask Optimizing Solution With Process Window Aware Inverse Correction". In: *Proc. DAC*. San Jose, California, 52:1–52:6.

²Yuzhe Ma et al. (2017). "A Unified Framework for Simultaneous Layout Decomposition and Mask Optimization". In: *Proc. ICCAD*, pp. 81–88.

³Ziyang Yu et al. (2021). "A GPU-enabled Level Set Method for Mask Optimization". In: *Proc. DATE*.

Discriminative models [TCAD'20]⁴ [ASPDAC'20]⁵

- Pixel-wise classification
- Printed image estimation/quality estimation

⁴Hao Geng, Wei Zhong, et al. (2020). "SRAF Insertion via Supervised Dictionary Learning". In: *IEEE TCAD*.

⁵Haoyu Yang, Wei Zhong, et al. (2020). "VLSI Mask Optimization: From Shallow To Deep Learning". In: *Proc. ASPDAC*, pp. 434–439.

Generative model [DAC'18]6 [ICCAD'20]7 [ICCAD'20]8

Image generation

⁶Haoyu Yang, Shuhe Li, et al. (2018). "GAN-OPC: Mask Optimization with Lithography-guided Generative Adversarial Nets". In: *Proc. DAC*, 131:1–131:6.

⁷Bentian Jiang et al. (2020). "Neural-ILT: Migrating ILT to Nerual Networks for Mask Printability and Complexity Co-optimizaton"". In: *Proc. ICCAD*.

⁸Guojin Chen et al. (2020). "DAMO: Deep Agile Mask Optimization for Full Chip Scale". In: *Proc. ICCAD*.

Deep Mask Optimization [ICCAD'20]⁸

---- Feed-forward ---- Back-Propagation

	GAN-OPC			Calibre			DMO		
	$L_2(nm)$	PV Band (nm ²)	Runtime (s)	$L_2(nm)$	PV Band (nm ²)	Runtime (s)	$L_2(nm)$	PV Band (nm ²)	Runtime (s)
case 1	7456	11424	284	5159	11671	1417	4631	11166	352
case 2	7321	11215	281	4987	11463	1406	4432	10955	336
case 3	7102	11265	285	5420	11516	1435	4802	11032	367
case 4	8032	11642	322	5382	11910	1606	4835	11265	399
Average	7478	11386	293	5237	11640	1466	4675	11104	363
Ratio	1.60	1.03	0.80	1.12	1.05	4.04	1.00	1.00	1.00

⁸Guojin Chen et al. (2020). "DAMO: Deep Agile Mask Optimization for Full Chip Scale". In: *Proc. ICCAD*.

• Tested on $10\mu m \times 10\mu m$ layout.

- DMO(1) Single GPU card;
- DMO(8) 8 GPU cards

Challenges

Main issues in full chip layout

- Scalability
- Stitch error

Main issues in mask manufacturing

- Non-desired "noisy" patterns
- High mask writing runtime

THANK YOU!