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ABSTRACT
We study partial order multiway search (POMS), which is a game

between an algorithmA and an oracle, played on a directed acyclic

graph G known to both parties. First, the oracle picks a vertex t
in G called the target. Then, A needs to figure out which vertex

is t by probing reachability. Specifically, in each probe, A selects

a set Q of vertices in G whose size is bounded by a (pre-agreed)

limit; the oracle reveals, for each vertex q ∈ Q , whether q can reach

the target in G. The objective of A is to minimize the number of

probes. This problem finds use in crowdsourcing, distributed file

systems, software testing, etc.

We describe an algorithm to solve POMS inO(log
1+k n+

d
k log

1+d n)
probes, where n is the number of vertices in G, k is the maximum

permissible |Q |, and d is the largest out-degree of the vertices in

G. We further establish the algorithm’s asymptotic optimality by

proving a matching lower bound.

We also introduce a variant of POMS in the external memory
(EM) computation model, which is the key to a black-box approach
for converting a class of pointer-machine structures to their I/O-

efficient counterparts. In the EM version of POMS, A is allowed

to pre-compute a (disk-based) structure on G and is then required

to clear its memory. The oracle (as before) picks a target t . A still

needs to find t by issuing probes, except that the setQ in each probe

must be read from the disk. The objective of A is now to minimize

the number of I/Os. We present a structure that uses O(n/B) space

and guarantees discovering the target in O(logB n +
d
B log

1+d n)
I/Os where B is the block size, and n and d are as defined earlier. We

establish the structure’s asymptotic optimality by proving that any

structure demands Ω(logB n +
d
B log

1+d n) I/Os to find the target

in the worst case regardless of the space consumption.
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1 INTRODUCTION
Binary search admits the following interpretation from a graph’s

perspective. We have a directed path π of n vertices where an

“oracle” has chosen a target vertex t . In each round, the search

algorithm picks a vertex q on π ; then the oracle reveals whether q
can reach t . Similarly, the B-tree exemplifies the multiway version

of the above process. In each round, the search algorithm picks a set

Q of B ≥ 1 vertices from π ; then the oracle reveals which of those

vertices can reach t . In both cases, the algorithm aims to discover t
with the fewest rounds.

This paper studies partial order multiway search (POMS), which

generalizes the aforementioned problems to arbitrary partial orders.

The next subsection will define two versions of POMS. The first one

is the classical formulation that finds use in a variety of database

applications (Section 1.2) and has received considerable attention

(see Section 1.3). The second is a new formulation, which bears

significance in designing I/O-efficient data structures (Section 1.2).

1.1 Problem Definitions
(Classical) POMS. The problem can be cast as a game between an

oracle and an algorithm A, both of which are given a single-rooted
DAG G, i.e., G has a unique root (a vertex with in-degree 0). The

game starts by having the oracle pick a target vertex t from G.
Then,A needs to find out which vertex is t by issuing (reachability)
probes. Specifically, in each probe:

• A chooses a set Q of vertices with |Q | ≤ k , where k is a

problem parameter;

• the oracle then reveals, for each vertex q ∈ Q , whether q can

reach t in G.

Clearly, A can always discover t with ⌈n/k⌉ probes where n is the

number of vertices in G. The challenge is to prove a better bound

on the number of probes that holds regardless of t .

POMS in externalmemory. In the external memory (EM)model, a

machine is equippedwith (i) a disk, which is an unbounded sequence

https://doi.org/10.1145/3517804.3524150
https://doi.org/10.1145/3517804.3524150


animal

mammal amphibious

tiger whale

terrestrialaquatic

vehicle

car

nissan honda mercedes

maxima sentra

Figure 1: POMS in image classification with crowdsourcing

of words divided into blocks of B ≥ 2words, and (ii)memory, which
is a sequence ofM words. The space of a structure is the number of

blocks occupied. An input/output (I/O) operation reads a block of

data from the disk to memory
1
.M is assumed to be larger than B

by a sufficiently large constant factor.
2

We now introduce an EM version of POMS (referred to as EM

POMS henceforth). Algorithm A is permitted to preprocess G into

a structure whose information is stored in the disk, after which A

clears the memory. To start a game, the oracle (as before) chooses

a target t from G. To carry out a probe, A needs to read a set Q
of vertices from the disk into memory. The oracle then reveals the

reachability (to t ) for all the vertices inQ .A then clears up memory

to finish the probe. Naively, A can store all the n vertices in ⌈n/B⌉
blocks and discover t with ⌈n/B⌉ I/Os. The challenge is reduce the
number of I/Os without increasing the space asymptotically.

Remark. The assumption that G is single-rooted loses no general-

ity. If G is not single-rooted, we can add a dummy vertex to G that

serves as the new root and has an out-going edge to every root in

the original G .

We will analyze the cost of an algorithm using (i) the number n
of vertices in G, (ii) the maximum out-degree d of the vertices in G,

and (iii) the problem parameter k (in the classical version) or the

model parameter B (in the EM version). As will be clear later, the

performance of our algorithm does not depend on the number of

edges in G and (for EM) the memory sizeM .

1.2 Motivation
Database relevance of (classical) POMS. The problem was first

introduced to the database area in SIGMOD’19 [38]. A major appli-

cation described in [38] is image classification with crowdsourcing,
where the objective is to assign an appropriate label from a concept

ontology to an image. As illustrated in Figure 1, an ontology is a

DAG where each vertex is associated with a concept; furthermore,

as we move down in the ontology, the concepts encountered are

increasingly specialized. The application manifests the power of a

crowdsourcing systemwhere human beings are summoned to assist

problem solving by answering (simple) questions with monetary

rewards. Every question has the form “is this an x?” where x is a

concept. Receiving a negative (resp., positive) answer to the ques-

tion “is this a vehicle?”, for instance, an algorithm can eliminate

all the concepts that are (resp., are not) reachable from the vertex

vehicle. The target t here is the concept eventually returned (e.g.,

sentra). As a crucial observation, although a human being is not

1
In general, the EM model also allows write I/Os, each of which overwrites a disk block

using B words in memory. However, we do not need to be concerned with such I/Os

in this paper.

2
The strictest EM model [2] requires an algorithm to work even if M ≥ 2B . However,
as shown in [25], any algorithm designed for M = µB for a constant µ > 2 can be

adapted to work under M = 2B with only a constant blowup in the number of I/O

operations.

aware of t , s/he can still answer questions based on straightfor-

ward reasoning and, thereby, play the role of oracle. As an example,

when presented a car picture of the model sentra, a person will

answer “yes” to “is this a vehicle?”, no matter if s/he is aware of

the concept sentra in the ontology. A crowdsourcing algorithm

often asks k > 1 questions at a time to reduce interaction rounds.

As pointed out in [36], POMS also arises in distributed file sys-

tems. Suppose that server A maintains a backup of its file system

(usually a tree but can also be a DAG, e.g., in Unix) in a remote

server B. Periodically, the two servers need to synchronize their

copies, which requires identifying the folders whose content has

changed since the last synchronization. If a folder has an identical

checksum at the two servers, (with high probability) it and its sub-

folders have incurred no changes. Based on this property, a POMS

algorithm can find a modified folder with small communication

between the two servers.

The reader may refer to [6, 36, 38] for more POMS applications in

software testing, relational databases, and workflow management.

Significance of POMS in EM.Making a “conventional” data struc-

ture (i.e., designed for memory-resident data) I/O-efficient is non-

trivial because one must take into account the effects of read-

ing/writing in blocks. Ideally, we would like to have a generic re-

duction to convert an arbitrary internal-memory structure to an

EM version with excellent performance. Designing such reductions

is still a major challenge today.

We observe that a solution to EM POMS offers an interesting

reduction that works on a class of region-based structures satisfying
the following properties:

• The structure is a single-rooted DAG G where each vertex

has out-degree at most d (the in-degree can be arbitrary).

• Each vertex u stores a region regu , which is a subset of a

search space Q and can be described in O(1) words.
• All the leaves (i.e., vertices with out-degree 0) have disjoint

regions whose union is Q.
• For each vertex u, regu is the region union of all the leaves

reachable from u.
• A query chooses an element q ∈ Q and returns the (only)

leaf whose region covers q. For any vertex u, whether q falls

in regu can be decided in constant time.

For example, the binary search tree is a region-based structure

where the region of each node is an interval of the form [x ,y)where
x and y are real values. So are the quad-tree and the kd-tree where

a node’s region is a multidimensional rectangle. We will discuss

more sophisticated region-based structures in Section 1.4.

In a region-based structure, a query can be modeled as an in-

stance of POMS. Let t be the leaf whose region contains the query

element q; we will treat t as the target selected by the oracle. Given

the regu of a vertex u, we can play the oracle’s role by deciding

whether u can reach t in O(1) time: the answer is yes if and only if

q ∈ regu . An algorithmA solving EM POMS implies an EM version

of the structure G as follows. In preprocessing, if A packs a set

S of vertices in a disk block, we store S , as well as the regions of
the vertices therein, inO(|S |/B) = O(1) disk blocks. In answering a

query, if A reads the block on S , we read the corresponding O(1)
blocks to acquire all the information needed to resolve reachability



problem ref. cost remark
POMS [5] O(d logn) G is a tree and k = 1

POMS [21, 23, 31] O(d log
1+d n) G is a tree and k = 1

POMS [38] O((logn)(log
1+k n) +

d
k log

1+d n) any DAG G and any k

POMS this paper O(log
1+k n +

d
k log

1+d n) any DAG G and any k

POMS [5] Ω(d log
1+d n) k = 1

POMS [38] Ω(dk log
1+d n) any k

POMS this paper Ω(log
1+k n +

d
k log

1+d n) any k

EM POMS this paper O(logB n +
d
B logd+1 n) space consumption O(n/B)

EM POMS this paper Ω(logB n +
d
B logd+1 n) holds regardless of how much space is used

Table 1: Summary of the previous and new results

(to t ) for the vertices in S . This enables us to simulate the execution

of A with only a constant blowup in the I/O cost.

1.3 Previous Results and Related Work
To appreciate the POMS literature, it is important to distinguish

between the instance-oriented and class-oriented categories which
have drastically different objectives. We will start with the former

category before discussing the latter.

Instance-oriented POMS. Consider any algorithm A for POMS.

Given an input G, define costk (A,G, t) as the cost ofA on G when

the target is t . We can measure the instance-oriented quality of A

bymaxcostIk (A,G) = maxt costk (A,G, t), namely, the largest cost

on the worst t in G. Because (i) the execution of A (given G and t )
is merely a sequence of probes and (ii) only a finite number of execu-

tion sequences exist (one for each t ), there are only a finite number

of possible A. Thus, the problem of finding an optimal algorithm

A∗ (with the lowest maxcostIk (A
∗,G)) is decidable. The challenge

is to understand how much we can reduce the computation time.

The problem is best understood in the special case where G is

a (rooted) tree and k = 1. In that case, Ben-Asher et al. [6] were

the first to show that an A∗ can be found in polynomial time.

Their work motivated a line of research looking for faster solutions

[18, 20, 26, 31–33, 36]. The problem turns out to be solvable inO(n)
time. This was first stated by Mozes et al. [33]; later, Dereniowski

[20] pointed out the problem’s equivalence to another problem

known as edge ranking, which had already been settled earlier

in O(n) time by Lam and Yue [32]. In contrast, the problem of

computing an A∗ on a DAG G is NP-hard [9] (even if k = 1).

Arkin et al. [4] showed that, for any DAG G and k = 1, one can

obtain in polynomial time an A whose maxcostIk (A,G) is higher
than maxcostIk (A

∗,G) by a factor ofO(logn).3 We are aware of no

results for k > 1 even when G is a tree.

For k = 1, instance-oriented POMS has also been studied under

other variants [1, 9–16, 19, 22, 27, 29, 30], which differ in whether

(i) the cost of a probe depends on the vertex supplied, (ii) the goal

is to minimize the cost of the worst t or the average cost over a
distribution of t , and (iii) the answer of the oracle can be noisy.

3
A better approximation ratio O (logn/log logn) was claimed in [20] but unfortu-

nately is not correct, as has been confirmed by our personal communication with the

author of [20].

Class-oriented POMS. Unlike the previous category that focuses

on computability, the class-oriented category is graph theoretic
in nature. Given a set C of single-rooted DAGs, the quality of

A is measured by maxcostCk (A,C ) = maxG∈C maxcostIk (A,G),
namely, the largest cost on the worst G in C . Define

minmaxcostk (C ) = min

A
maxcostCk (A,C ) (1)

that is, the lowest upper bound that an algorithm can possibly place

on its cost regardless of (i) the input G ∈ C and (ii) the target t
in G. The objective is to understand the function minmaxcostk (C )
for important classes C . Define

G (n,d) = { single-rooted DAG G | G has n vertices and

maximum out-degree d }

T (n,d) = {G ∈ G (n,d) | G is a tree}

Clearly, minmaxcostk (T (n,d)) ≤ minmaxcostk (G (n,d)).
Focusing onT (n,d) andk = 1, Ben-Asher and Farchi [5] showed

that minmaxcost1(T (n,d)) is Ω(d log1+d n) but O(d logn), leaving
a gap of Θ(log(1 + d)) in between. Laber and Nogueira [31] tight-

ened the upper bound and proved that minmaxcost1(T (n,d)) ∈
Θ(d log

1+d n) (see also [21, 23] where the same result was derived).

Regarding G (n,d) and arbitrary k ≥ 1, Tao et al. [38] obtained

minmaxcostk (G (n,d)) = Ω(dk log
1+d n) andminmaxcostk (G (n,d)) =

O((logn)(log
1+k n) +

d
k log

1+d n). In fact, the lower bound of [38]

holds even when replacing G (n,d) with T (n,d).

EM.We are aware of no solutions to the EM version of POMS even

when G is a tree.

1.4 Our Results
Table 1 compares this paper’s results to the previous ones. Next,

we will discuss our findings and their implications in detail.

POMS. Our first main contribution is to settle POMS optimally:

Theorem 1. Both statements below are true about POMS:
• There is an algorithm that can find the target inO(log

1+k n +
d
k log

1+d n) probes.
• Any POMS algorithm must perform Ω(log

1+k n +
d
k log

1+d n)
probes to find the target in the worst case.

The theorem essentially shows

minmaxcostk (G (n,d)) = Θ(log
1+k n + (d/k) log1+d n). (2)
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Figure 2: A region-based structure on the VRS problem

Our lower bound in the second bullet holds even if G comes from

T (n,d). This reveals a somewhat unexpected fact: POMS on trees
is as hard as on DAGs, or formally:

Corollary 2. minmaxcostk (T (n,d)) = Θ(minmaxcostk (G (n,d))).

Theorem 1 has a further implication in the instance-oriented

category:

Corollary 3. Consider any tree G ∈ T (n,d) and an arbitrary
integer k ∈ [1,n]. Denote by A∗ an algorithm achieving the lowest
maxcostIk (A

∗,G). In time polynomial to n, we can obtain an algo-
rithm A satisfying

maxcostIk (A,G)

maxcostIk (A
∗,G)

= O

(
logn

log(1 + k) + log logn

)
.

The EM version. Our second main contribution is to optimally

settle POMS in EM:

Theorem 4. Both statements below are true about EM POMS:
• There is a structure of O(n/B) space that guarantees discover-
ing the target in O(logB n +

d
B log

1+d n) I/Os.
• In the worst case, every structuremust incurΩ(logB n+

d
B log

1+d n)
I/Os to find the target, regardless of the space usage.

Note that our structure’s space and I/O complexities (the first

bullet) do not depend on the number of edges in the input DAG.

Furthermore, when d = O(B), the I/O cost becomes O(logB n).

Generic EM reduction for region-based structures. Combin-

ing Theorem 4 with the reduction in Section 1.2, we can now assert

that any region-based structure with n vertices has an EM coun-

terpart that uses O(n/B) space and answers a query in O(logB n +
d
B logd+1 n) I/Os. Next, we illustrate the reduction using an internal-
memory structure that (i) is well known, (ii) solves an important

problem, and (iii) contains an appropriate amount of sophistication

to demonstrate the reduction’s power.

Vertical ray shooting (VRS) is a problem defined as follows. The

input is a set S of disjoint line segments in R2. Given a point q in R2,
a query reports the first segment in S (if any) hit by the upward ray

emanating from q. Figure 2(a) shows an example where the query

answer is s1. The objective is to store S in a data structure to answer

all queries efficiently. This is a fundamental problem with profound

significance to database systems; see [25] for how it stands at the

core of point location queries and nearest neighbor search, and [7]

for its relevance to temporal databases.

For each segment s ∈ S , shoot upward and downward rays from

each of its two endpoints. Each ray stops as soon as hitting a seg-

ment in S and, accordingly, turns into a segment. These rays (some

have turned into segments) together with S form a planar subdi-

vision of R2, which is called the trapezoidal map on S . Figure 2(b)
shows the trapezoidal map for the input in Figure 2(a). Answering

a query with some point q is identical to finding the trapezoid in

the trapezoidal map covering q (e.g., trapezoid IV in Figure 2(b)).

In [34], Mulmuley introduced the idea of building a binary tree

where (i) each internal node stores either a segment in S or an end-

point of such a segment, and (ii) each leaf node stores a trapezoid in

the trapezoidal map. Given a point q, we can identify the trapezoid

containing q by traversing a root-to-leaf path. Figure 2(c) shows

a binary tree for our example. Consider the point q in Figure 2(a).

At the root B, we navigate to the right child C because q is on the

right of B (by x-coordinate). From node C , we descend to the left

child s2 because q is on the left of C . At node s2, we check whether

q is below or above s2; since the answer is “above”, we move to the

right child s1. At node s1, we go to the left child because q is below

s1. This takes us to the target trapezoid IV.

Each node u in the binary tree is implicitly associated with a

region regu in R2. The root is associated with the entire R2. In-
ductively, (i) if an internal node u stores a point p, the region of

its left (resp., right) child includes all the points in regu whose

x-coordinates are smaller (resp., larger) than that of p; (ii) if an
internal node u stores a segment s , the region of its left (right, resp.)

child includes all the points in regu below (resp., above) of s . In
Figure 2(d), we have divided trapezoid V into two parts such that

the left (resp., right) part is the region of the leaf labeled as V (resp.,

V) in Figure 2(c). It is then easy to verify that the binary tree is

indeed a region-based structure.

Binary trees satisfying Mulmuley’s description are not unique.

Some of them can have Θ(n2) nodes where n = |S |. In [37], Seidel

gave a randomized algorithm to produce a binary tree of size O(n)
in expectation. This proves the existence of at least one binary tree

having O(n) nodes. Theorem 4 immediately gives an EM structure

ofO(n/B) space that answers any query inO(logB n+
d
B logd+1 n) =

O(logB n) I/Os, noticing that the parameter d is 2 (binary tree).

Several remarks are in order:

• The algorithm of [37] may yield a binary tree with a large

height (even when the tree has size O(n)). Seidel [37] gave
a non-trivial analysis on how likely the height is small. In

contrast, we can take an arbitrarily unbalanced binary tree

with O(n) nodes and obtain an EM structure of O(logB n)
query cost.

• In EM, the known VRS structures (see [8, 25, 35] for a full lit-

erature review) achievingO(n/B) space andO(logB n) query
cost were obtained using the partial persistence [3, 25] and



the topology tree [8, 24] techniques. Our method is drastically

different and conceptually neater.

• Our reduction in Section 1.2 is actually more powerful than

demonstrated above because it applies even if the (internal-

memory) structure is a DAG.

2 PRELIMINARIES
Basic concepts and notation. Henceforth, every “tree” should be
understood as a rooted tree. The size of a tree T , denoted as |T |, is
the number of nodes. Notation u ∈ T (resp., u < T ) indicates that
u is (resp., is not) a node of T . Notation parent(u) gives the parent
node of u. The subtree of a node u ∈ T — denoted as Tu — is the

tree that is induced by the descendants of u in T and is rooted at u.
Reserving G for the input graph of POMS, we will use symbolG

when referring to a general single-rooted DAG. A treeT is contained
in G if every edge of T belongs to G. Given such a tree T , G[T ]
represents the subgraph ofG induced by the vertices inT ; note that
G[T ] must be a single-rooted DAG. If node u can reach node v in

G, we will say that u can G-reach v .

Shielding. Given nodes u and v in a tree T , we define Tu ⊖ {v} as:

• Tu if u = v ;
• what remains in Tu after removing Tv (note that if v < Tu ,
Tu ⊖ {v} = Tu ).

We will refer to ⊖ as the shield operator. Given a node u ∈ T and a

set S = {v1,v2, ...,vx } where vi ∈ T for each i ∈ [1,x], we define

Tu ⊖ S = Tu ⊖ {v1} ⊖ {v2}... ⊖ {vx }.

Note thatTu ⊖S is always a non-empty tree because it must contain

u itself.

Heavy-path depthfirst search tree.Consider performing a depth

first search (DFS) on a single-rooted DAG G starting from its root.

Recall that DFS uses a stack to manage the vertices that have been

discovered but may still have undiscovered out-neighbors. Vertices

are assigned three colors: white (never in stack), gray (in stack), and

black (already popped out). At each step, the traditional DFS would

process an arbitrary white out-neighbor v of the vertex utop that
currently tops the stack. The heavy path depth first search (HPDFS),

on the other hand, processes the white out-neighbor vbest of utop
able to G-reach the most white vertices via white paths

4
.

HPDFS defines a treeT — the HPDFS-tree [38] — where a node u
parents another v if the latter is discovered while the former tops

the stack. It also defines a total order ≺ on the vertices in G: u ≺ v
(read as u smaller than v or v larger than u) if u enters the stack

before v . For two sibling nodes u and v in T such that u ≺ v , we
call u a left sibling of v and, conversely, v a right sibling of u.

Appendix A proves the following properties of T :

Lemma 5. Let T be an HPDFS-tree of a single-rooted DAG G.
• (Order property) Ifu is a left sibling ofv inT , then (i)u ′ ≺ v
for every u ′ ∈ Tu and (ii) u ≺ v ′ for every v ′ ∈ Tv .
• (No-cross-reachability property) If u ≺ v and v < Tu ,
then u cannot G-reach v ′ for any v ′ ∈ Tv .
• (Path-descendants property) If w ∈ Tu , then v ∈ Tu for
every node v that lies on at least one u-to-w path in G.

4
A white path is a path that includes only white vertices. If two or more nodes satisfy

this condition, vbest can be any of them.
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Figure 3: A running example. G is the graph represented
by both the solid and dashed edges. An HPDFS T of G is
indicated by the solid edges. The labels on the nodes are
consistent with the total order ≺. The black nodes consti-
tute the 8-separator Σ = {a, d, e, j, n, p} of T . The nodes of
LFU(Σ) = {b, d, h, i} are shown using concentric circles.

• (Subtree-size property) If u is a left sibling of v in T , then
|Tu | ≥ |Tv |.

Example. ConsiderG as the graph that has all the solid and dashed

edges in Figure 3. The tree in solid edges represents an HPDFS-tree

T of G. The alphabetic order of the node labels reflects the total
order ≺ (the labels on some nodes are omitted). Because node b
precedes h in ≺ and h < Tb, the no-cross-reachability property

assures us that b cannot G-reach any node in Th. Because k ∈ Th,
the path-descendants property asserts that every path from h to

k in G can contain only nodes in Th. The other two properties are

easy to understand. □

3 NEW RESULTS IN GRAPH THEORY
Crucial to our POMS algorithms is a suite of new graph-theoretic

results which we present in this section. Our discussion will revolve

around a single-rooted graphG havingn nodes, an arbitrary HPDFS-
tree T of G, and an ordering ≺ on the vertices of G decided by T .

3.1 Separators
It is well-known [28] that T must contain a node whose removal

disconnects T into trees each of at most n/2 nodes. In Appendix B,

we prove a more general fact:

Lemma 6. Let T be an HPDFS-tree of a single-rooted DAG with n
vertices. For any λ ∈ [2,n], there exists a set S of at most λ − 1 nodes
whose removal disconnects T into trees each of at most n/λ nodes.

More specifically, Appendix B shows that such an S can be found

using the algorithm below:

construct-separator
1. S ← ∅; T ′ ← T ; τ ← n/λ
2. while |T ′ | ≥ ⌊τ ⌋ + 1 do
3. u ← the smallest node (under ≺) in T ′ s.t.

|T ′u | ≥ ⌊τ ⌋ + 1 but |T
′
v | ≤ ⌊τ ⌋ for each child v of u

/* remark: u definitely exists */

4. add u to S ; remove T ′u from T ′

5. return S

We define the λ-separator of T to be a set Σ determined as follows:



...

...

...
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Figure 4: The left flank of u includes all the white nodes.

• if S (the above algorithm’s output) contains the root of T ,
then Σ = S ;
• otherwise, Σ = S ∪ {root of T }.

Clearly, |Σ| ≤ λ by Lemma 6.

Example. Assume that T is the tree in solid edges as shown in Fig-

ure 3 (T has 36 nodes). The 8-separator of T is Σ = {a, d, e, j, n, p};
the above algorithm finds the nodes of Σ in the order d, e, j, n, p, a.
Figure 3 colors all the nodes of Σ in black. □

3.2 Left Flanks and Flank/Grand Unions
In this subsection, we introduce three concepts important to our

discussion: left flank, left-flank union, and grand union.
Fix an arbitrary node u ∈ T ; and consider the root-to-u path π

in T . We define the left flank of u — denoted as LF(u) — using the

following procedure:

• Initialize an empty set S .
• Consider each node v on π with v , u. Let v ′ be the child
of v on π . Add to S all the left siblings of v ′ in T .
• The S after the previous step is LF(u).

See Figure 4 for an illustration.

Let Σ be the λ-separator of T . The left-flank union (LFU) of Σ is

LFU(Σ) =
⋃
u ∈Σ

LF(u)

and the grand union (GU) of Σ is

GU(Σ) = Σ ∪ LFU(Σ).

Example. Consider again the graph G in Figure 3 with λ = 8.

As explained before, Σ = {a, d, e, j, n, p}. The left flank of node

p is LF(p) = {b, h}, while LF(n) = {b, i}. It is easy to verify that

LFU(Σ) = {b, d, h, i} and GU(Σ) = {a, b, d, e, h, i, j, n, p}. □
In Appendix C, we prove:

Lemma 7. |LFU(Σ)| ≤ |Σ| − 1.

It is clear from Lemmas 6 and 7 that |GU(Σ)| < 2λ.

3.3 Stars
In this subsection, we introduce star, which is yet another concept

crucial to our technical development.

Fix a vertex t in G and a non-empty set S of vertices in G that

includes the root of G. The star of S for t is the smallest (under ≺)

node s∗ ∈ S satisfying:

• (Condition C1) s∗ can G-reach t ;
• (Condition C2) there does not exist another node s ∈ S
such that s ∈ Ts∗ and s can G-reach t .

See Figure 5 for an illustration. Note that the root’s presence in S
guarantees the existence of s∗.

Example. Consider Figure 3 with t = k and S = {a, b, h, l, m, p}.
The star s∗ of S for t is h. □

3.4 Three Path Preservation Lemmas
This subsection will demonstrate the importance of left flanks,

grand unions, and stars in preserving reachability. We will establish

three lemmas that are useful in various scenarios.

Preservation using a root-containing set. Appendix D proves:

Lemma 8. LetT be an HPDFS-tree of a single-rooted DAGG . Let S
be a set of vertices that includes the root of G , t be a vertex in G, and
s∗ be the star of S for t . Suppose that t ∈ Ts∗ and t , s∗. If s# is the
smallest (under the total order decided by T ) child of s∗ in T that can
G-reach t , then
• t ∈ Ts# ;
• every s#-to-t path in G is present in G[Ts# ⊖ S].

Example. Consider Figure 3 with t = k and S = {a, b, h, l, m, p}. As
mentioned, the star s∗ of S for t is h. Both child nodes of h (i.e., i
and n) canG-reach t = k. Hence, s# = i.Ts# ⊖S — the tree obtained

by “shielding” Ti with S — consists of the edges in Tj plus the

edge (i, j). Note that i has two paths to k in G, both of which are

preserved in G[Ts# ⊖ S]. □

Preservation using a separator.We prove in Appendix E:

Lemma 9. Let T be an HPDFS-tree of a single-rooted DAG G, t be
a vertex in G, Σ be the k-separator of T , and s∗ the star of Σ for t . If
s∗∗ is the smallest node in LF(s∗) ∪ {s∗} able to G-reach t , then
• t ∈ Ts∗∗ ;
• every s∗∗-to-t path in G is present in G[Ts∗∗ ⊖ Σ].

Example. Consider Figure 3 with λ = 8 and t = m. Recall that Σ =
{a, d, e, j, n, p} and, hence, s∗ = p. Thus, LF(s∗) ∪ {s∗} = {b, h, p},
giving s∗∗ = h.Ts∗∗ ⊖Σ is a tree with four nodes: h, i, l and m.G has

two h-to-m paths inG , both of which are preserved inG[Ts∗∗⊖Σ]. □

Preservation using a grand union.We prove in Appendix F:

Lemma 10. LetT be an HPDFS-tree of a single-rooted DAGG , t be
a vertex in G, Σ be the k-separator of T , and s∗ is the star of GU(Σ)
for t . Then
• t ∈ Ts∗ ;
• every s∗-to-t path in G is preserved in G[Ts∗ ⊖ GU(Σ)].

Example. Consider Figure 3 with λ = 8. As explained in Section 3.2,

GU(Σ) = {a, b, d, e, h, i, j, n, p}. If t = f, then s∗ = b. The tree

Tb ⊖ GU(Σ) has nodes b, c, f and g. G has two b-to-f paths, both

preserved in G[Ts∗ ⊖ GU(Σ)]. □

4 A POMS ALGORITHM
This section will present our first POMS algorithm, assuming k ≥ 2

(if k = 1, manually increase it to 2).

Define G0 = G. We perform POMS by shrinking the input graph

G into smaller single-rooted DAGs G1,G2, ...,Gh (for some h ≥ 1)

where the last DAG Gh becomes small enough to be solvable with

a single probe.

Specifically, in the i-th iteration, we are given a single-rooted

DAG Gi−1 with ni−1 vertices and produce a single-rooted DAG Gi
having three properties:



t

s∗a subtree of the root

Figure 5: S is the set of black vertices. The star of S for t is s∗.

• (size reduction) Gi has ni ≤ ni−1/k vertices;

• (target containment) Gi contains the target t ;
• (path preserving) if r is the root of Gi , then every r -to-t
path in Gi−1 is present in Gi .

Graph Gi has an important property:

A vertex u can Gi -reach the target t
if and only if u can G-reach t .

The “only-if direction” is trivial. The “if direction” follows from the

fact that every r -to-t path in the original graph G is preserved in Gi
for every i , which can proved with a simple inductive argument

(induction on i) applying the path-preserving property.

Next, we prove the existence of such a nice Gi by giving an

algorithm for its computation. Thanks to the above property, we

can speak about “performing” a reachability probe on Gi−1, with

the understanding that the probe should really be carried out on G.

Consider iteration i ≥ 1. If Gi−1 has ni−1 ≤ k vertices, t can be

found trivially with one probe. Otherwise, we generate Gi in two

phases.

Phase 1. Construct an HPDFS-tree T of Gi−1 and the k-separator
Σ ofT . Let ≺ be the total order defined byT on the vertices of Gi−1.

As |Σ| ≤ k (Section 3.1), with a single probe we can obtain all the

vertices in Σ able to Gi−1-reach t (there must be at least one such

vertex because Σ includes the root of Gi−1). We can then identify

the star s∗ of Σ for t (Section 3). By Lemma 7, |LF(s∗)| ≤ |LFU(Σ)| ≤
k − 1. Thus, with another probe we can figure out which nodes

in LF(s∗) ∪ {s∗} can Gi−1-reach t ; let s∗∗ be the smallest (under ≺)

among those nodes.

Phase 2. It must hold that either s∗∗ < Σ or s∗∗ = s∗.5 In the former

case, we finalize Gi to be Gi−1[Ts∗∗ ⊖ Σ].
Now consider the case where s∗∗ = s∗. We aim to find the small-

est (under ≺) child s# of s∗ (in T ) that can Gi−1-reach t . For this
purpose, it suffices to probe the reachability (to t ) for the child nodes
of s∗ in ascending order of ≺ (each probe includes k nodes, except

possibly the last probe) and stop as soon as encountering s#. If s#

does not exist, we declare t = s∗ and finish the whole algorithm.

Otherwise, we set Gi to Gi−1[Ts# ⊖ Σ].
The lemma below, whose proof (Appendix G) utilizes Lemmas 8

and 9, ascertains our algorithm’s correctness:

Lemma 11. If the algorithm does not finish in iteration i , Gi has the
size-reduction, target-containment, and path-preserving properties.

As analyzed in Appendix H, our algorithm performsO(log
1+k n+

d
k log

1+d n) probes, which establishes the first bullet of Theorem 1.

5
If s∗∗ ∈ Σ but s∗∗ , s∗ , then s∗∗ ≺ s∗ in which case s∗ cannot be the smallest node
satisfying Conditions C1 and C2 (Section 3).

5 AN EM POMS ALGORITHM
This section will settle POMS in the EM model. In Section 5.1, we

design another POMS algorithm with the performance guarantees

in Theorem 1. Compared to the one in Section 4, the new algorithm

is more complex but is endowed with two special properties and,

thus, can be adapted to work in EM as shown in Section 5.2.

5.1 Another POMS algorithm
Our new POMS algorithm follows the same iterative framework as

in Section 4. The i-th iteration (i ≥ 1) finds t with one probe if Gi−1
has at most k vertices; otherwise, it produces Gi in two phases but

in a way different from Section 4.

Phase 1. Construct an HPDFS-tree T of Gi−1 (which determines

a total order ≺) and find the k-separator Σ of T . As |GU(Σ)| < 2k
(Section 3), with at most two probes we can find the nodes in GU(Σ)
capable of Gi−1-reaching t and, hence, the star s

∗
of GU(Σ) for t .

Phase 2. If s∗ < Σ, the iteration outputs Gi = Gi−1[Ts∗ ⊖ GU(Σ)].
Otherwise, we find the smallest (under ≺) child s# of s∗ in T that

can Gi−1-reach t . If s
#
exists, the iteration outputs Gi = Gi−1[Ts# ⊖

GU(Σ)]; otherwise, the algorithm finishes with t = s∗.
By resorting to Lemmas 8 and 10 and adapting the cost analysis

of our first POMS algorithm, we prove in Appendix I:

Lemma 12. The above algorithm is correct and achieves the same
guarantees as in Theorem 1.

Two properties. Let us concentrate on an arbitrary iteration —

say the i-th (with i ≥ 1) — of the algorithm and fix its input Gi−1.

The iteration’s execution is determined by Gi−1 and the target t
(which must be in Gi−1 due to the target-containment property in

Section 4). We define a function OUT(Gi−1, t) to return

• an empty graph if the iteration finds t , or
• the DAG Gi , otherwise.

Define further:

OUT(Gi−1) = {OUT(Gi−1,v) | v in Gi−1}.

Appendix J proves:

Lemma 13. No two DAGs inOUT(Gi−1) share any common vertex.

Let T be an HPDFS-tree of Gi−1 and Σ be the λ-separator of T .
Let us collect the children of all the nodes in Σ into a set C; we will

call C the children set of Σ. We prove in Appendix K:

Lemma 14. |C| ≤ |Σ| + |OUT(Gi−1)|.

5.2 An EM Structure
To find the target t , our EM structure deploys the algorithm A of

Lemma 12 by setting its parameter k to the block size B. Towards
this purpose, we precompute all the probes that A can possibly

perform. For every probe, the structure stores the at most B vertices

(requested by the probe) in O(1) blocks. Thus, no matter which

probe A needs to make, A can always load the corresponding

vertices into memory with O(1) I/Os.
The main challenge is to argue that the space complexity is

O(n/B). Towards that purpose, we will create the structure recur-
sively and leverage Lemmas 13 and 14 to obtain a non-conventional

recurrence on the space consumption which will solve to O(n/B).



Fix an arbitrary i . As mentioned, the i-th iteration ofA depends

only on Gi−1 and where t is in Gi−1. Now, fix a Gi−1 that can possi-

bly occur. Given this Gi−1, the i-th iteration can have |OUT(Gi−1)|

different outputs, as discussed in Section 5.1. We will create a struc-

ture POMS(Gi−1, i) which gives A all the information needed to

carry out the iteration on Gi−1. Recall that, when unable to find

the target t , the iteration outputs a DAG Gi ∈ OUT(Gi−1) for the

(i + 1)-th iteration. This Gi will then be recursively handled by

structure POMS(Gi , i + 1). The entry point to the whole recursion

is POMS(G, 1) = POMS(G0, 1).

Structure POMS(Gi−1, i): when Gi−1 is large. We now explain

the details of POMS(Gi−1, i), assuming first that Gi−1 has more

than B vertices. Let T be an HPDFS-tree of Gi−1 and Σ be the B-
separator of T . In O(1) blocks, we store all the vertices GU(Σ) and
encode their ancestor-descendant relationships in T ;6 they will be

referred to as the grand-union blocks. By reading these blocks into

memory, A can execute Phase 1 to decide, for each u ∈ GU(Σ),
whether u can Gi−1-reach t . After that, A must have obtained the

star s∗ of GU(Σ) for t .
Fix an arbitrary node u ∈ GU(Σ) \ Σ. If s∗ = u, Phase 2 of the

iteration generates Gi = Gi−1[Ts∗ ⊖ GU(Σ)] to be processed by

iteration i + 1. We build POMS(Gi , i + 1) recursively and store

a pointer (i.e., a disk address) to POMS(Gi , i + 1) at u inside the

grand-union blocks of POMS(Gi−1, i).
Now, fix an arbitrary node u ∈ Σ. If s∗ = u, Phase 2 needs to

identify the smallest child s# of s∗ able to Gi−1-reach t or declare
the absence of s#. For this purpose, we store the children of u in

ascending order of ≺ in consecutive blocks — call them the children
blocks — which A reads until either having found s# or having

exhausted all the children of s∗. If s# is not found, the algorithm
terminates with t = u. Otherwise, it generates Gi = Gi−1[Ts# ⊖
GU(Σ)]. We build POMS(Gi , i + 1) recursively and store a pointer

to POMS(Gi , i + 1) at s
#
inside the children blocks. This completes

the description of POMS(Gi−1, i).

Structure POMS(Gi−1, i): when Gi−1 is small. If Gi−1 has less
than B vertices, A finishes with a single probe. The situation is

slightly more complex in EM because we do not have access to

the edges in Gi−1. Fortunately, we can eliminate the barrier by

resorting to an HPDFS-tree T of Gi−1. Note that T has at most B
nodes and, therefore, fits in O(1) blocks. To find t , we read those

blocks into memory, acquire theirGi−1-reachability to t from oracle,

and then identify the star s∗ of the set of vertices in T for t . The
no-cross-reachability property of Lemma 5 ensures s∗ = t .

I/O cost. The algorithm performs O(1) I/Os for every probe issued

by the POMS algorithm of Lemma 12. It follows immediately that

the overall I/O cost is O(logB n + (d/B) log1+d n).

Space.We make sure that all blocks, except possibly one, are full.

This can be achieved by first generating the sequence of words

needed to represent the structure, then chopping the sequence

into blocks of size B, and finally making one more pass over the

sequence to fix the pointers. Hence, it suffices to analyze how many

words are used by our structure.

6
It is well-known that the ancestor-descendant relationships of x nodes in a tree can

be encoded in O (x ) words.

Let function f (n) be the number of words necessary (in the worst

case) when G has n vertices. Trivially, f (n) = O(n) when n ≤ B.
Next, we discuss the scenario n > B.

Let us focus on the structure POMS(G, 1), i.e., the entry structure

of the whole recursion. The number of words in the grand-union

blocks is O(|GU(Σ)|) = O(|Σ|) (Lemma 3). Let C be the children set

(Section 5.1) of the B-separator Σ used in POMS(G, 1). The children

blocks of all the nodes in Σ use O(|C|) words in total.

We still need to account for the space of the recursive structure

on every possible G1 ∈ OUT(G, 1). Denoting by |G1 | the number

of vertices in G1, we have:

f (n) = O(1 + |Σ| + |C|) +
∑

G1∈OUT(G,1)

f (|G1 |)

= O(1 + |Σ| + |OUT(G, 1)|) +
∑

G1∈OUT(G,1)

f (|G1 |) (3)

where the last equality applied Lemma 14. The recurrence is con-

strained by |Σ| +
∑
G1∈OUT(G,1) |G1 | ≤ n because (i) no vertex of

Σ can appear in any G1 ∈ OUT(G, 1), and (ii) no two DAGs in

OUT(G, 1) share any common vertices (Lemma 13). Appendix L

shows that the recurrence (3) gives f (n) = O(n).
This concludes the proof for the first bullet of Theorem 4.

6 LOWER BOUNDS
A lower bound on instance-oriented POMS. Consider G as a

tree with n vertices and maximum out-degree d . We will show that

maxcostIk (A,G) = Ω(log
1+k n + d/k) (4)

hold for any POMS algorithmA, wheremaxcostIk (A,G) is defined
in Section 1.3.

Consider a probe with a setQ of k ≥ 1 vertices q1,q2, ...,qk . The
oracle returns an outcome sequence a1,a2, ...,ak , where ai = 1 if qi
can G-reach the target t or 0 otherwise. With Q fixed, the outcome

sequence solely depends on t . In Appendix M, we prove:

Lemma 15. When G is a tree, there are at most k+1 distinct output
sequences for a specific Q , as t ranges over all the vertices in G.

We now prove maxcostIk (A,G) = Ω(log
1+k n) with an informa-

tion theoretic argument. By Lemma 15, each outcome sequence can

be encoded in O(log(k + 1)) bits. At least log
2
n bits are needed to

encode the n possible targets t . Thus, Ω(
logn

log(1+k ) ) probes are needed

for at least one t .
To establish (4), it remains to show thatmaxcostIk (A,G) = Ω(1+

d/k). We achieve the purpose with an alternative argument. Let u
be an arbitrary node in G with d child nodes v1,v2, ...,vd . Define
S = {v1, ...,vd }. When asked if a node q ∈ G can reach t , the oracle
acts in the following manner until |S | = 1: (i) if q ∈ S , return “no”

and then remove q from S ; (ii) if q < S and q can reach u, return
“yes”; (iii) otherwise, return no. When |S | drops to 1, the oracle

finalizes t to the only node left in S . It is now clear thatA must set

q to at least d − 1 distinct nodes throughout the execution, which
necessitates at least ⌈(d − 1)/k⌉ probes.

Proof of the second bullet in Theorem 1. It has been proved in

[38] thatminmaxcostk (T (n,d)), defined in (1), is Ω((d/k) log1+d n).
Next, we show that it is also Ω(log

1+k n), which will give

minmaxcostk (T (n,d)) = Ω(log
1+k n + (d/k) log1+d n) (5)



and will complete the proof of Theorem 1.

LetA be an algorithm achieving the minimum in the right hand

side of (1), namely,maxcostCk (A,T (n,d)) = minmaxcostk (T (n,d)).
Take an arbitrary G ∈ T (n,d). Clearly, maxcostCk (A,T (n,d)) ≥
maxcostIk (A,G). We have proved earlier thatmaxcostIk (A,G)must

be Ω(log
1+k n).

Proof of Corollary 2. Immediate from (2) and (5).

Proof of Corollary 3. Our algorithm A in Theorem 1 ensures

maxcostIk (A,G) = O(log1+k n +
d
k log

1+d n), which is greater than

the right hand side of (4) by a factor of O(
logn

log(1+k)+log logn ). To see

why, note that the factor is always bounded by O(log
1+d n), which

is O(
logn

log(1+k )+log logn ) if d ≥
k log

2
n

log
2
(1+k ) . If d ≤

k log
2
n

log
2
(1+k ) , the factor

is O(
(d/k) log

1+d n
log

1+k n
) = O(dk

log(1+k )
log(1+d ) ), which is O(

logn
log(1+k )+log logn ).

Proof of the second bullet in Theorem 4. Fix a value of n and

consider any DAG G with n vertices. We claim that, in general,

given a structure I that ensures finding the target t in G using

F (B) I/Os, we can obtain a POMS algorithm A that finds t with
at most F (k) probes. It will then follows from the second bullet

of Theorem 1 that F (B) = Ω(logB n + (d/B) log1+d n), which will

complete the proof of Theorem 4.

We design A as follows. First, A builds a structure I on G by

setting B = k . Then, A interacts with the oracle by emulating

the algorithm of I. Specifically, whenever I performs an I/O to

read a set S of at most B vertices, A probes the oracle about the

G-reachability (to t ) of every vertex in S . This way, A acquires as

much information as I and, thus, will terminate after F (k) probes
(a.k.a. I/Os).
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APPENDIX
A PROOF OF LEMMA 5
The following is known as the white path theorem of DFS:

Theorem 16 ([17]). For any nodes u and v , v ∈ Tu if and only if
G has a white path from u to v right before u enters the stack.

The theorem implies:

Corollary 17. Consider the moment when u is about to enter the
stack; if (i) v is white and (ii) G has no white path from u to v , then
v enters the stack after u is popped. If in addition G has a white path
from u to u ′ at that moment, then u ′ ≺ v .

(Order property) As v < Tu , by Theorem 16, no white path

exists from u to v when u enters the stack; thus, v enters the stack

after u is popped (Corollary 17, applying the fact that u ≺ v) .
u ′ ∈ Tu indicates that u is in the stack when u ′ enters the stack.
The two facts together indicate u ′ ≺ v . On the other hand, v ′ ∈ Tv
means that v ≺ v ′, which leads to u ≺ v ′.

(No-cross-reachability property) Take an arbitrary v ′ ∈ Tv ;
it must be white when u enters the stack (order property). Assume

thatG has a path π from u to v ′. Let v ′′ be the last non-white node
on π at the moment whenu enters the stack (v ′′ must exist because

otherwise v ′ ∈ Tu by Theorem 16, contradicting v ′ ∈ Tv ). Hence,
when v ′′ enters the stack, a white path exists from v ′′ to v ′ but not
from v ′′ to u (otherwise, there would be a cycle). By Corollary 17,

v ′ ≺ u, which contradicts the order property.

(Path-descendants property) Assume that π is a u-to-w path

containing at least one node outside Tu . When u enters the stack,

some nodes on π must be non-white (Theorem 16); let v be such a

node on π closest tow . When v enters the stack, there must be a

white path fromv tow ; by Theorem 16,w ∈ Tv . Because (i)w ∈ Tu
and (ii) v < Tu , v must be a proper ancestor of u in T . But this
means that G has a path from v to u, thereby creating a cycle.

(Subtree-size property) This property immediately follows

from the definition of HPDFS and Theorem 16.

B PROOF OF LEMMA 6
It is obvious from the algorithm that the removal of Σ disconnects

T into trees of at most n/λ nodes. It remains to show |Σ| ≤ λ − 1.
Suppose that |Σ| ≥ λ. Every time when we add a node into Σ at Line

4, ⌊τ ⌋+1 > τ nodes are removed fromT ′. The total number of nodes

removed is strictly larger |Σ|τ ≥ λτ = n, giving a contradiction.

C PROOF OF LEMMA 7
We will start with a property of left flanks:

Lemma 18. For any u ∈ Σ and v ∈ LF(u), Σ \ {u} has at least one
node in Tv .

Proof. Node v must have a right sibling v ′ on the path from

the root to u; note that v ′ is an ancestor of u. By the way Σ is

produced from construct-separator (Section 2), we must have

|Tv ′ | ≥ ⌊n/λ⌋ + 1, which leads to |Tv | ≥ ⌊n/λ⌋ + 1 (subtree-size

property of Lemma 5). The design of construct-separator guar-
antees that Σ contains at least one node in Tv , which obviously

cannot be u. □

Define P as the set of edges e in T such that e is on the root-

to-u path for at least one u ∈ Σ. Denote by T P
the subgraph of T

induced by P ; clearly, T P
is a tree. Consider any node v ∈ LFU(Σ).

By definition of LFU(Σ),v ∈ LF(u) for someu ∈ Σ, because of which
Tv contains at least one node in Σ (Lemma 18). Hence, v ∈ T P

. In

other words, all the nodes in LFU(Σ) are in T P
.

Let I be the set of internal nodes in T P
that have two or more

child nodes (in T P
). For each u ∈ I , denote by cu the number of its

child nodes inT P
. Every nodev ∈ LFU(Σ) satisfies: (i) parent(v) ∈ I ;

and (ii) v has a right sibling in T P
. This implies that each u ∈ I

has at most cu − 1 child nodes in LFU(Σ), leading to |LFU(Σ)| ≤∑
u ∈I (cu − 1).
It remains to prove

∑
u ∈I (cu − 1) ≤ |Σ| − 1. Denote by x the

number of leaves in T P
and by y the number of internal nodes in

T P
with only one child (inT P

). By howT P
is built, every leaf node

of T P
must belong to Σ; hence, x ≤ |Σ|. Since the degree sum of

the vertices inT P
must be equivalent to twice the number of edges

in T P
, we have

x + 2y +

(∑
u ∈I
(cu + 1)

)
− 1 = 2(|I | + x + y − 1)

⇒
∑
u ∈I
(cu − 1) = x − 1 ≤ |Σ| − 1.

D PROOF OF LEMMA 8
Proof of the first bullet. Clearly, t < Tv for any left sibling v of

s# (recall that s# is the smallest child of s∗ that can G-reach t ). If
t ∈ Tv for some right sibling v of s#, we have a violation of the

no-cross-reachability property.

Proof of the second bullet. Consider an arbitrary s#-to-t path π
inG . We argue that every node u on π is inTs# ⊖S . The claim in the

second bullet will then follow becauseG[Ts#⊖S] is a vertex-induced
subgraph of G.

To this end, assume that u is a node on π . The path-descendants
property of Lemma 5 indicates u ∈ Ts# due to the existence of π .
Therefore, if u < Ts# ⊖ S , then u must have been “shielded” by S ,
namely, there is some s ∈ S with s , s# such that s ∈ Ts# and

u ∈ Ts . Given that u canG-reach t , s must also be able toG-reach t .
However, s ∈ Ts# tells us that s ∈ Ts∗ , which means that s violates
Condition C2 in the definition of s∗, giving a contradiction.

E PROOF OF LEMMA 9
We will establish a useful fact:

Lemma 19. If u can G-reach w , then w ∈ Tu∗ where u∗ is the
smallest node in LF(u) ∪ {u} able to G-reachw .

Proof. We will show first that w ∈ Tu∗ for some node u∗ ∈
LF(u) ∪ {u}. Let π be the path in T from the root to u, and p be the

lowest ancestor of u such that w ∈ Tp . If p = u, w ∈ Tu∗ holds by
settingu∗ = u. Otherwise, letv be the child of p on π ; we must have

w < Tv . Since p , w (otherwise G has a cycle), p must have a child

u∗ such thatw ∈ Tu∗ . We now argue thatu∗ is a left sibling ofv and,

hence, belongs to LF(u). Indeed, if u∗ is a right sibling, then nodes

v and u∗ cause a violation of the no-cross-reachability property of

Lemma 5: v (which can G-reachw via u) is able to G-reach a node

(i.e.,w) in Tu∗ .



As none of the nodes in LF(u) ∪ {u} are ancestors of each other,

there is a unique node u∗ ∈ LF(u) ∪ {u} satisfyingw ∈ Tu∗ . By the

no-cross-reachability property, no v ′ ∈ LF(u) ∪ {u} with v ′ ≺ u∗

can G-reachw : if such a v ′ exists, the property is violated for the

nodes v ′ andw . This completes the proof. □

Proof of the first bullet of Lemma 9. Immediate from Lemma 19:

since s∗ can G-reach t , we know t ∈ Ts∗∗ .

Proof of the second bullet. We will argue that every s∗∗-to-t
path π in G must have all its nodes in Ts∗∗ ⊖ Σ. This will establish
Lemma 9 by the definition ofG[Ts∗∗ ⊖Σ]. Let u be an arbitrary node

on π . By the path-descendants property of Lemma 5, we must have

u ∈ Ts∗∗ . If u < Ts∗∗ ⊖ Σ, then u must have been “shielded” by Σ,
namely, some node s ∈ Σ satisfies s , s∗∗, s ∈ Ts∗∗ , and u ∈ Ts
(which indicates that s can G-reach u). The existence of s rules out
the possibility that s∗∗ = s∗; otherwise, s violates the Condition C2

in the definition of s∗ (Section 3). Thus, s∗∗ ∈ LF(s∗) and therefore

s∗∗ ≺ s∗. But in this case we must have s ≺ s∗ (order property
of Lemma 5), which means that s ∈ Σ is a smaller node than s∗

satisfying Condition C1. Furthermore, since every node in Ts is

smaller than s∗ (order property), Ts must contain a smaller node

than s∗ that is in Σ and satisfies both C1 and C2. This contradicts

that s∗ is the smallest such node.

F PROOF OF LEMMA 10
We will first show LF(s∗) ⊆ LFU(Σ). This holds directly by def-

inition if s∗ ∈ Σ. Consider now s∗ ∈ GU(Σ) \ Σ, which means

s∗ ∈ LFU(Σ). By Lemma 18, at least one node u ∈ Σ appears in Ts∗ ;
thus, LF(s∗) ⊆ LF(u) ⊆ LFU(Σ).

We now prove the first bullet of Lemma 10. Every node in LF(s∗)
is smaller than s∗ (under ≺). Applying LF(s∗) ⊆ LFU(Σ) and the

definition of s∗, we know that LF(s∗) has no nodes able toG-reach t .
Indeed, if some node in LF(s∗) is able toG-reach t , then s∗ is not the
smallest node in GU(Σ) satisfying Conditions C1 and C2 (Section 3).

Then, t ∈ Ts∗ by Lemma 19.

To prove the second bullet, consider an arbitrary s∗-to-t path π
inG . It suffices to show u ∈ Ts∗ ⊖ GU(Σ) for every node u on π . By
the path-descendants property of Lemma 5, we have that u ∈ Ts∗ .
If u < Ts∗ ⊖GU(Σ), there must be some s ∈ GU(Σ) with s , s∗ such
that s ∈ Ts∗ and u ∈ Ts . But this means that s canG-reach t (by way
of u), contradicting the Condition C2 (Section 3) in the definition

of s∗.

G PROOF OF LEMMA 11
Gi includes no vertices from Σ and, thus, can have at most ni−1/k
nodes (Lemma 6). Next, we prove the claim that Gi contains t and
is path preserving. If s∗∗ < Σ, the claim follows immediately from

Lemma 9. In the case where s∗∗ = s∗, the first bullet of Lemma 9

assures us that t must appear in Ts∗ . If s
#
does not exist, s∗ must be

t and the algorithm finishes correctly. Otherwise, the claim follows

from Lemma 8.

H COST ANALYSIS FOR THE ALGORITHM IN
SECTION 4

Given Gi−1, the i-th (i ≥ 1) iteration of our algorithm either finds

t or outputs Gi . Suppose that the algorithm finds t at iteration h

for some h ≥ 1. Since our goal is to bound the worst-case cost, it

suffices to discuss only the case where Gh−1 has no more than k
vertices. We will focus on k ≥ 2 (for k = 1, manually increase it to

2).

Analysis of one iteration. Consider the i-th iteration of any i ∈
[1,h − 1]. Let T ,≺, s∗, s∗∗ and s# be defined in the same way as

in Section 4. Set ni−1 (resp., ni ) to the number of vertices in Gi−1
(resp., Gi ). Define an integer xi as follows:

• if s∗∗ , s∗, xi = 0;

• otherwise, xi equals how many child nodes of s∗ (in T ) are
smaller than s#.

The i-th iteration issues at most

2 +

⌈
xi + 1

k

⌉
(6)

queries (two queries in Phase 1 and the rest in Phase 2).

Lemma 20. For every i ∈ [1,h − 1]:

ni ≤
ni−1

max{k,xi + 1}
. (7)

Proof. The fact ni ≤ ni−1/k has been proved in Appendix G.

Next, we will prove ni ≤ ni−1/(xi + 1). This is obviously true if

xi = 0. The rest of the proof assumes xi > 0. In this case, s# has
xi left siblings v satisfying |Tv | ≥ |Ts# | (subtree-size property of

Lemma 5). Hence, |Ts# | = (xi + 1)|Ts# | / (xi + 1) ≤ ni−1/(xi + 1).
The lemma then follows from ni ≤ |Ts# |. □

Total cost. Applying (7) for each i ∈ [1,h − 1] yields

n∏h−1
i=1 max{k,xi + 1}

≥ nh−1 ≥ 1. (8)

Therefore, h = O(logk n). By (6), the total cost of the algorithm is

at most

1 +

h−1∑
i=1

(
2 +

⌈
xi + 1

k

⌉)
≤ 1 +

h−1∑
i=1

(
3 +

1

k
+
xi
k

)
= O(logk n) +

1

k

h−1∑
i=1

xi . (9)

If d ≤ k , then xi ≤ d ≤ k ; hence, (9) is bounded by O(logk n).
Assuming d ≥ k + 1, the rest of the proof will show

h−1∑
i=1

xi = O(d logd n + k logk n) (10)

whichwill yield the conclusion that our algorithm performsO(logk n+
d
k logd n) probes in total.

Proof of (10). The integers x1, ...,xh−1 satisfy 0 ≤ xi ≤ d − 1 and

h−1∏
i=1

max{k,xi + 1} ≤ n (11)

because of (8). Wewill prove (10) under the relaxation that x1, ...,xh
are real values (instead of integers) in [0,d − 1]. In such a case, the

constraint (11) can be replaced by

h−1∏
i=1
(xi + 1) ≤ n (12)



by requiring xi ≥ k − 1, noticing that if xi < k − 1, raising it to

k − 1 always increases the left hand side of (10). Thus, the goal now

is to maximize

∑h−1
i=1 xi subject to (12) and xi ∈ [k − 1,d − 1].

Lemma 21. When
∑h−1
i=1 xi is maximized, atmost one ofx1, ...,xh−1

can be strictly larger than k − 1 but strictly smaller than d − 1.

Proof. Suppose that there are distinct i1, i2 ∈ [1,h−1] such that
xi1 and xi2 are both strictly larger than k − 1 but strictly smaller

than d − 1. Without loss of generality, assume xi1 ≥ xi2 . Set c =
(xi1 + 1)(xi2 + 1). Clearly, k

2 < c < d2. We can increase xi1 + xi2 as
follows:

• if c > dk , modify xi1 to d − 1 and xi2 to c/d − 1;
• otherwise, modify xi1 to c/k − 1 and xi2 to k − 1.

After the modification, xi1 = d −1 or xi2 = k −1; and no constraints
are violated becausek−1 ≤ xi2 ≤ xi1 ≤ d−1 and (xi1+1)(xi2+1) = c .
This contradicts the claim that the original x1, ...,xh−1 maximize∑h−1
i=1 xi . □

Consider a set of x1, ...,xh−1 that maximizes

∑h−1
i=1 xi . Let y1 (or

y2) be the number of variables among x1, ...,xh−1 that are set to
k − 1 (or d − 1, resp.). Because of (12), y2 = O(logd n); on the other

hand, trivially y1 ≤ h − 1. Hence:

h−1∑
i=1

xi ≤ y1(k − 1) + (1 + y2)(d − 1)

= O(hk + d logd n) = O(k logk n + d logd n).

I PROOF OF LEMMA 12
To prove the algorithm’s correctness, it suffices to show that if the

algorithm does not finish at iteration i , Gi has the size-reduction,
target-containment, and path-preserving properties described in

Section 4.

• (size-reduction) As Gi includes no vertices from Σ, Gi can
have at most ni−1/k nodes (Lemma 6).

• (target-containment and path-preserving) If s∗ < Σ, the
two properties follow directly from Lemma 10. Now, consider

s∗ ∈ Σ. By Lemma 10, t ∈ Ts∗ . Hence, if s
#
does not exist,

s∗ = t and the algorithm finishes. Otherwise, by Lemma 8,

Gi = Gi−1[Ts# ⊖ GU(Σ)] contains t and is path preserving.

We can prove that the algorithm performsO(log
1+k n+

d
k log

1+d n)
probes by adapting the argument of Appendix H in a straightfor-

ward manner.

J PROOF OF LEMMA 13
Consider any two different and non-empty graphs G1 and G2 in

OUT(Gi−1). Denote by r1 (resp., r2) the root of G1 (resp., G2). In

other words,G1 = Gi−1[Tr1 ⊖GU(Σ)] andG2 = Gi−1[Tr2 ⊖GU(Σ)],
which implies r1 , r2. Next, we show that Tr1 ⊖ GU(Σ) and Tr2 ⊖
GU(Σ) do not share any common vertex. Since these graphs are

trees, this is obvious if r1 and r2 have no ancestor-descendant rela-

tionship in T .
Assume, without loss of generality, that r1 is a proper ancestor

of r2 in T . By the way our algorithm runs, we must have either

• (Case 1) r2 ∈ GU(Σ) \ Σ or

• (Case 2) parent(r2) ∈ Σ.

Specifically, Case 1 can happen only if s∗ = r2, while Case 2 can
happen only if s# = r2.

In Case 1,Tr1 ⊖GU(Σ) is contained inTr1 ⊖ {r2} which shares no

vertices withTr2 . It thus follows thatTr1 ⊖GU(Σ) shares no vertices
with Tr2 ⊖ GU(Σ).

Consider now Case 2. In general, the Gi produced by iteration i
is never rooted at a vertex in Σ.7 Hence, r1 < Σ, which means that

parent(r2) is a proper descendant of r1 in T . Because parent(r2) ∈
Σ ∈ GU(Σ), Tr1 ⊖ GU(Σ) is contained in Tr1 ⊖ {parent(r2)}. Tr1 ⊖
{parent(r2)} shares no vertices with Tparent(r2), whereas Tparent(r2)
contains Tr2 ⊖GU(Σ). Therefore, we can conclude that no common

vertex can exist in Tr1 ⊖ GU(Σ) and Tr2 ⊖ GU(Σ).

K PROOF OF LEMMA 14
We will prove that for each node u ∈ C \ Σ, there exists a graph
in OUT(Gi−1) rooted at u. Because each graph in OUT(Gi−1) is

single-rooted, we have |C \ Σ| ≤ |OUT(Gi−1)|, leading to |C| ≤

|Σ| + |OUT(Gi−1)|.
Fix any node u ∈ C \ Σ. Recall that OUT(Gi−1, t) is (i) empty if

iteration i finds the target t or (ii) a single-rooted Gi otherwise. We

will focus on t = u and prove that in this case OUT(Gi−1, t) is a
DAG rooted atu. As OUT(Gi−1, t) ∈ OUT(Gi−1), it will then follow

that OUT(Gi−1) has a DAG rooted at u, completing the proof of

Lemma 14.

Let us start with the scenario where (t =) u ∈ LFU(Σ). The
crucial observation is that u must be the star of GU(Σ) for u itself.

This is due to three facts: (i) no proper descendants of u (in T ) can
Gi−1-reach u (otherwise, there would be a cycle), (ii) no proper

ancestor of u can be the star (because u can Gi−1-reach itself), and

(iii) if a node v is smaller than u (under ≺) but not an ancestor

of u, then v cannot Gi−1-reach u (no-cross-reachability property

of Lemma 5). Hence, Phase 1 of the algorithm returns s∗ = u. As
s∗ = u < Σ, Phase 2 generates Gi = Gi−1[Tu ⊖ GU(Σ)], which is

clearly rooted at u.
The subsequent discussion will focus on the situation (t =)

u < LFU(Σ). The following is a general fact (which holds regardless

of if t = u).

Lemma 22. If u ∈ C \ Σ but u < LFU(Σ), then
• parent(u) is the star of GU(Σ) for u;
• u is the smallest child of parent(u) able to Gi−1-reach u.

Proof. The second bullet is a direct corollary from the no-cross-

reachability property of Lemma 5.

The first bullet will follow from the definition of the star of

GU(Σ), provided that we can establish:

• (Fact 1) If a node v ∈ GU(Σ) satisfies v ≺ parent(u) and
parent(u) < Tv , then v cannot Gi−1-reach u.
• (Fact 2) If a node v ∈ GU(Σ) satisfies v ∈ Tparent(u) and
v , parent(u), then v cannot Gi−1-reach u.

Fact 1 is also a direct corollary from the no-cross-reachability prop-

erty. It remains to prove Fact 2.

Suppose that some v as defined in Fact 2 is able to Gi−1-reach u.
We observe:

7Gi is rooted either at s∗ or s# . In the former case, we must have s∗ < Σ. In the latter

case, we must have s# < Σ: if s# ∈ Σ then s# ∈ GU(Σ), which contradicts that s∗
satisfies condition C2 (Section 3).



• v cannot be a descendant (inT ) of any left sibling ofu (other-

wise that left sibling can Gi−1-reach u, violating the second

bullet of Lemma 22);

• v , u (because u < Σ and u < LFU(Σ) tell us u < GU(Σ));
• v cannot be a proper descendant of u in T (otherwise there

is a cycle).

Thus, there must exist a right sibling u ′ of u such that v ∈ Tu′ .
By Lemma 18, Tv must contain at least one node in Σ.8 Hence,

Tu′ also contains at least one node, sayw , in Σ. But this means that

u (being a left sibling of u ′) belongs to LF(w) and, hence, LFU(Σ),
causing a contradiction. □

By the first bullet of the above lemma, Phase 1 returns s∗ =
parent(u). Since u ∈ C, we know parent(u) ∈ Σ. By the lemma’s

second bullet, Phase 2 sets s# = u and outputs OUT(Gi−1, t) =
Gi−1[Tu ⊖ GU(Σ)], which is rooted at u.

L SOLVING THE FUNCTION f (n) IN SEC. 5.2
We consider, without loss of generality, that f (n) ≤ c1n for n ≤ B
where c1 is a constant. Meanwhile, rewrite (3) into:

f (n) ≤ c2(1 + |Σ| + |OUT(G, 1)|) +
∑

G1∈OUT(G,1)

f (|G1 |) (13)

for some constant c2. Set c = max{c1, c2}. We will show f (n) ≤
4cn − 3c . Assuming that this holds for all n ≤ z − 1 where integer z
satisfies z ≥ B + 1 ≥ 2, we will prove its correctness for n = z.

Consider any G with z vertices. If |OUT(G, 1)| = 0, then (13)

gives f (z) ≤ cz+c which is at most 4cz−3c as long as z ≥ 2. When

|OUT(G, 1)| ≥ 1, we get from (13):

f (z) ≤ c(1 + |Σ| + |OUT(G, 1)|) +
∑

G1∈OUT(G,1)

f (|G1 |)

≤ c(1 + |Σ| + |OUT(G, 1)|) +
∑

G1∈OUT(G,1)

(4c |G1 | − 3c)

= c − 2c |OUT(G, 1)| − 3c |Σ| + 4c
©«|Σ| +

∑
G1∈OUT(G,1)

|G1 |
ª®¬

Recall from Section 5.2 that |Σ| +
∑
G1∈OUT(G,1) |G1 | ≤ n = z.

Hence:

f (z) ≤ c − 2c |OUT(G, 1)| − 3c |Σ| + 4cz

≤ 4cz + c − 2c(|OUT(G, 1)| + |Σ|)

≤ 4cz + c − 4c

where the last inequality used |Σ| ≥ 1 (root of G always in Σ) and
|OUT(G, 1)| ≥ 1. Hence, f (z) ≤ 4cz − 3c , which completes the

proof.

M PROOF OF LEMMA 15
We prove the lemma by induction on k . Obviously, a query under

k = 1 has two outcome sequences. Assuming that the lemma is

true for k = z (for some z ≥ 1), next we prove its correctness for

k = z + 1. As before, let the query sequenceQ be q1,q2, ...,qz+1. At
least one node in Q has the property that its subtree in G contains

8
This is obviously true if v ∈ Σ. Otherwise, the fact v ∈ GU(Σ) tells us that v ∈
LFU(w ) for some w ∈ Σ. Lemma 18 shows that Tv must have at least one node in

Σ \ {w }.
no other nodes in Q . Assume that qz+1 is such a node (otherwise,

rename the nodes in Q).
For each selection of t ∈ G, denote by a1(t),a2(t), ...,az+1(t) the

corresponding output sequence. If nodes t and t ′ both belong to

the subtree of qz+1 (in G), then ai (t) = ai (t
′) for all i ∈ [1, z]. This

is true because the subtree of qz+1 is either contained in that of

qi (in which case ai (t) = ai (t
′) = 1) or disjoint with that of qi (in

which case ai (t) = ai (t
′) = 0).

Consider the set of all output sequences a1(t),a2(t), ...,az+1(t)
as t ranges over all the vertices in G. Divide the set into Group

1 where az+1(t) = 1 and Group 0 where az+1(t) = 0. Our earlier

discussion implies that Group 1 has exactly one sequence. By the

inductive assumption, Group 0 has at most z+1 sequences. We thus

conclude that there are at most z + 2 distinct a1(t),a2(t), ...,az+1(t).
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