
From Online to Non-i.i.d. Batch Learning

Yufei Tao
Chinese University of Hong Kong

taoyf@cse.cuhk.edu.hk

Shangqi Lu
Chinese University of Hong Kong

sqlu@cse.cuhk.edu.hk

ABSTRACT

This paper initializes the study of online-to-batch conversion when

the samples in batch learning are not i.i.d. Our motivation origi-

nated from two facts. First, sample sets in reality are seldom i.i.d.,

thus preventing the application of the existing conversions. Second,

the online model of learning permits an adversarial stream of sam-

ples that almost for sure violates the i.i.d. assumption, raising the

possibility of adapting an online algorithm effectively to learn from

a non-i.i.d. sample set. We present a set of techniques to utilize an

online algorithm as a black box to perform batch learning in the

absence of the i.i.d. assumption. Our techniques are generic, and

are applicable to virtually any online algorithms on classification.

This provides strong evidence that the great variety of known algo-

rithms in the online-learning literature can indeed be harnessed to

learn from sufficiently-representative non-i.i.d. samples.

CCS CONCEPTS

• Theory of computation→ Machine learning theory.

KEYWORDS

Online-to-Batch Conversion; Learning Algorithms; Classification

ACM Reference Format:

Yufei Tao and Shangqi Lu. 2020. From Online to Non-i.i.d. Batch Learning. In

Proceedings of the 26th ACM SIGKDD Conference on Knowledge Discovery and

Data Mining (KDD ’20), August 23–27, 2020, Virtual Event, CA, USA. ACM,

New York, NY, USA, 10 pages. https://doi.org/10.1145/3394486.3403075

1 INTRODUCTION

Batch (a.k.a., offline) learning and online learning are the two most

popular models in machine learning. In batch learning, a learner al-

gorithm is provided a (reasonably large) training set all at once, and

produces a model deployed to make predictions on future samples.

Provided that the training set is sufficiently representative of the dis-

tribution from which future samples are drawn, the model output

by a good algorithm should strike high accuracy in its predictions.

In online learning, on the other hand, a learner algorithm is given

one sample at a time, but is required to make a prediction right away.

Only after the prediction has been made will the algorithm be told

the correct answer. In case the answer is different from the predic-

tion, the algorithm makes a mistake. As the procedure continues,

the algorithm must learn from the history — why mistakes were

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

KDD ’20, August 23–27, 2020, Virtual Event, CA, USA

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7998-4/20/08. . . $15.00
https://doi.org/10.1145/3394486.3403075

made on some samples but not others — in order to avoid future

mistakes as much as possible.

These two forms of learning suit different sets of applications.

Batch learning is appropriate when training data are abundant and

the underlying distribution is relatively stable. One example is face

recognition, where samples are easy to acquire and faces of the same

individual do not incur drastic changes. In contrast, online learning

should be performed when urgent decisions must be made before

sufficient training data can be gathered, or the target distribution

is drifting or even unknown. A typical scenario is weather forecast,

where each day gives only one new sample, yet a prediction must

be rendered before the answer becomes available, not to mention

that the “distribution” of weather is still abstruse till this day.

The literature of machine learning harbors two families of tech-

niques developed in each model. They are not “equal” because

standard methods exist to convert an online algorithm to work in

the batch model (the reverse is impossible [4]). Significantly, this

makes the entire online family exploitable for batch learning. Many

online algorithms are light weighted yet possess interesting theoret-

ical guarantees; these nice properties are usually inherited by their

batch versions. The Perceptron [37] and winnow [27] algorithms are

perhaps the most classic examples of this kind. Originally designed

for online linear classification, ideas of the two algorithms have

permeated into a great variety of batch learning based on convex

optimization and weighted voting. It has been argued recently [20]

that online learning will gain even more momentum in the big data

era as the need of real-time stream mining gets strengthened.

Unfortunately, the existing online-to-batch conversions (Section 3)

all assume that the training set of batch learning is collected in an

i.i.d. (independently and identically distributed) manner. The as-

sumption is inherent in PAC-learning, although it is an open secret

that training samples are seldom independent in practice. There has

been a lack of efforts to remedy the issue. This is understandable

because theoretical analysis in learning typically requires gener-

alization theorems to relate a model’s empirical error (on training

samples) to its prediction error (on future samples). Traditionally,

such theorems were established under the i.i.d. assumption, which

ties the related studies to the assumption as well.

The situation has changed dramatically. Recent years have wit-

nessed considerable progress in proving generalization theorems

under the non-i.i.d. model (Sections 2.1 and 3), amid the substantial

on-going efforts towards alleviating the i.i.d. assumption. However,

the previous online-to-batch conversionmethods all lose their math-

ematical rigor in the non-i.i.d. model. As a consequence, the large

“treasure trove” of online algorithms is yet to be made applicable to

batch learning with non-i.i.d. samples.

Online-to-batch conversion without the i.i.d. assumption is an

intriguing topic on its own. Intuitively, the assumption does not

seem necessary since, in the online model, the incoming samples

are not required to be independent at all! In fact, they can even be

adversarial, namely, maliciously chosen to thwart the learner algo-

rithm, whereas a robust algorithm must still work well nonetheless.

This fact actually has not been reflected in the previous research

because the i.i.d. assumption is an indigenous property of PAC-

learning. Therefore, only in the non-i.i.d. model would the essence

of online-to-batch conversion be revealed.

In this paper, we develop the first suite of techniques to convert

an online algorithm for batch learning on a non-i.i.d. sample set.

Our techniques are generic because they are applicable to any clas-

sification algorithm. In fact, the algorithm does not even need to

possess strong theoretical guarantees; instead, it can be a heuristic

algorithm, but as long as it works well on the given training data, it

can be deployed for effective batch learning. This owes to a new

concept called worst-permutation mistake bound, by virtue of which

we prove instance-sensitive (i.e., stronger than worst-case) theoret-

ical bounds. Besides ensuring rigorous guarantees, the proposed

algorithms are easy to understand and implement, and perform

very well in practice as demonstrated in our experimentation.

The rest of the paper is organized as follows. Section 2 sets

up the stage for our study by formally describing the problem.

Section 3 reviews the previous research directly related to this

work. Sections 4-6 develop the proposed algorithms by gradually

unfolding the technical details. Section 7 presents an extensive

experimental evaluation using real data, while finally Section 8

concludes the paper with a summary of findings.

2 PROBLEM FORMALIZATION

We will start by reviewing in Section 2.1 the learning models as-

sumed by this work. After that, we will formalize in Section 2.2

the framework of online-to-batch conversion in the absence of the

i.i.d. assumption. Finally, we will instantiate in Section 2.3 our gen-

eral framework into two representative problems, illustrating the

relevant concepts in concrete contexts.

2.1 Models of learning

Let X be a set where each element is an instance. Define Y to be

another set where each element is a label. We will refer to X as

the instance space, and Y as the label space. Note that X may be

uncountably infinite, but Y is a finite set.

A hypothesis (a.k.a. concept or classifier) h is a function from

X to Y. In other words, h maps each instance x ∈ X to a label

h(x) ∈ Y. Denote by H the set of all possible hypotheses; H can

be uncountably infinite. The objective of learning is to discover a

hypothesis in H that can predict labels from instances accurately.

What this means and how it can be achieved depend on the learning

model, as defined next.

The online model. In this model, an algorithm A interacts with

an oracle (sometimes referred to as the environment) in rounds. A

holds a classifier hnow at all times (the initial hnow is arbitrary),

while in each round:

1. the oracle selects a pair (x ,y) from a certainU ⊆ X ×Y
where the subsetU is known to A

2. the oracle reveals x to A

3. A outputs ŷ = hnow(x) as the predicted label for x

4. the oracle then reveals the (real) label y

5. A changes hnow if y , ŷ

A is said to make a mistake if y , ŷ. The goal of A is to make the

fewest mistakes as the rounds proceed indefinitely.

It is important to note that the oracle does not need to choose

the next pair (x ,y) independently of the previous pairs. In fact, the

oracle may purposely harm A by selecting the pair maliciously.

Ideally, A should do well even on the worst stream of pairs.

PAC-learning. In this model, the oracle chooses a distribution D
over some U ⊆ X × Y. U is known to the algorithm, but D is

hidden. For a hypothesis h ∈ H, its error is

err(h) = Pr
(x,y)∼D

[h(x) , y] (1)

namely, if we sample a pair (x ,y) according to D, how often would

h mis-predict the label y. The goal of an algorithm A is to find a

hypothesis with a small error. A works by drawing from the oracle

a set S = {(xi ,yi) | 1 ≤ i ≤ n} of independent samples according to

D, and trying to find a good hypothesis using S .

For each hypothesis h ∈ H, define its empirical error on S as1

ˆerrS (h) =
1

n

n
∑

i=1

1h(xi),yi . (2)

It is known— by generalization theorems (see, for example, Chapters

2 and 3 of [35]) — that with a large probability, for every hypothesis

h ∈ H, the absolute difference |err(h) − ˆerrS (h)| is bounded by an

additive factor that approaches 0 as n tends to∞.2 This motivates

the empirical risk minimization (ERM) method, which returns a

hypothesis h that has a small empirical error ˆerrS (h).
The non-i.i.d. model. This model generalizes PAC-learning by

dropping the requirement that S should be independent.

Consider again a distributionD onU ⊆ X×Y. The error err(h)
of a hypothesis h ∈ H is still defined in (1). As before, an algorithm

A may draw a set S of samples, each of which is distributed ac-

cording to D. The difference, however, is that the n = |S | samples

are not guaranteed independent. Instead, the generation of those

samples obeys a certain set R of dependence rules, which in general

governs how correlation can be injected, and is what differentiates

specific learning problems. A is not aware of D and R (but A

knowsU); its goal is still to find an h from S to minimize err(h).
Once S is ready, the empirical error ˆerrS (h) of a hypothesish ∈ H

is still given by (2). Generalization theorems akin to those in PAC-

learning have been established for many types of R (a survey will

appear in Section 3). In other words, it holds with a large probability

that, for every h ∈ H, err(h) can be higher than ˆerrS (h) by only an

additive factor that vanishes as n approaches∞. This again justifies

the ERM method of returning a hypothesis h with small ˆerrS (h).

2.2 Online to non-i.i.d. batch learning

We are ready to formulate themain problem studied in this work. Fix

an online algorithmAonline designed for a learning problemPonline

characterized byX,Y,U, andH. LetPnoniid be a learning problem

in the non-i.i.d. model characterized by (i) the sameX,Y,U, andH

asPonline , and (ii) its own distributionD and set of dependent rules

R. Let S be a set of n samples drawn for Pnoniid (remember that

1In general, 1π equals 1 if the predicate π holds, or 0 otherwise.
2One provable factor of this kind is Õ (

√

λ/n) where λ is the so-called VC-dimension

ofH, and a constant independent of n. The notation Õ (.) hides polylogarithmic terms.

the samples may not be independent). We want to deploy Aonline

to find a hypothesis with small empirical error on S .

To continue the formulation, we introduce the concept of worst-

permutation mistake bound, which will be important to our results.

Fix an arbitrary permutation Π of the samples in S ; suppose without

loss of generality that Π is the sequence (x1,y1), ..., (xn ,yn). Imag-

ine running Aonline on Π for problem Ponline , i.e., as if the oracle

had chosen Π as the sequence of instance-label pairs. Denote byMΠ

the number of mistakes that are made by Aonline on Π. Then:

Definition 1. The worst-permutation (WP) mistake bound

of Aonline on S is maxΠ MΠ , where the maximization is over all the

n! permutations of S .

Wewill useM to denote the aboveWPmistake bound (remember:

M depends on the sample set S). M measures the robustness of

Aonline with respect to S . The problem studied in this work can be

stated as:

Problem 1. Without knowing the value ofM , deploy Aonline as

a black box to find a hypothesis h ∈ H whose empirical error on S is

provably small, provided thatM ≪ n.

Remark 1 (R-oblivious). Our formulation deals with S directly,

and has nothing to do with the dependence rules in R. A solution

to the problem must be applicable to all learning problems in the

non-i.i.d. model, regardless of how the samples are correlated. This

is important as in practice R may not be known.

Remark 2 (A must be good). The requirement M ≪ n is indis-

pensable. Consider the extreme caseM = n; hence, A is no better

than the don’t-care algorithm that simply predicts all labels as 1.

The don’t-care algorithm is useless for batch learning, and so is A .

Remark 3 (A can be empirically good). Every Aonline has a

WP mistake bound M on every S . This is true even if Aonline is

heuristic and promises no strong guarantees in general. A solution

to Problem 1 permits us to leverage Aonline whenever its boundM

on the given S is small.

Remark 4 (computational efficiency).We will be interested in

only solutions demanding polynomial computation time. Details

will be elaborated when they become necessary.

2.3 Two representative instantiations

Online learning has been extensively studied for a great variety

of problems (Section 3). Next, we will look at two problems, and

discuss how the proposed framework gets instantiated in each.

Selection of the two problems is based on the following thoughts:

(i) the first, conjunction of boolean literals, is one of the simplest

online problems, and enables concept illustration with the least

technical details; (ii) the second problem, linear classification, bears

significant importance in machine learning; (iii) the first problem

demonstrates consistent classification, while the second exemplifies

inconsistent classification; and (iv) finally, their WP mistake bounds

have drastically different styles.

Conjunction of boolean literals. Consider d boolean variables

x1,x2, ...,xd . A literal is as either xi or its negation xi where i ∈
[1,d]. An expression is the conjunction of a non-empty set of literals.

For example, x1, x2, and x1 ∧ x2 are all expressions, but x1 ∨ x2 is
not, and neither is (x1 ∨ x2) ∧ x3.

Define the instance space X = {0, 1}d . Note that each element

x ∈ X is a d-dimension boolean vector x = (x1,x2, ...,xd). Define
the label space Y = {−1, 1}, i.e., binary classification. Let H be the

set of all expressions. For each expression (i.e., hypothesis) h ∈ H,
h(x) equals 1 if evaluating the expression h on x gives 1, or −1 if
the evaluation gives 0.

In the online model, the oracle (secretly) chooses an expression

h∗ ∈ H, and setsU = {(x ,h∗(x)) | x ∈ X}. In other words, every

instance-label pair (x ,y) that the oracle subsequently picks must

be consistent with h∗ (hence, consistent classification).
Consider an online algorithm in the above scenario. There are 3d

meaningful expressions (three choices per variable: itself, negation,

or absence). A naive algorithm would make at most 3d mistakes,

before narrowing down to h∗. It is, however, possible to make at

most d + 1 mistakes3; let Aonline denote that algorithm.

We now turn attention to the non-i.i.d. model. The oracle chooses

a distribution D overU and a certain set R of dependence rules.

We draw a set S of (non-i.i.d.) samples from the oracle, and aim to

use Aonline to find an expression h ∈ H with small empirical error
ˆerrS (h). Clearly, Aonline has a WP mistake bound of M ≤ d + 1.

When d ≪ n, we must guarantee that ˆerrS (h) be provably small.

As a remark, the bound d + 1 is data-independent, i.e., it holds

for all sample sets S .

Linear classification. Consider Rd (with R being the real domain)

where each element x is a d-dimensional point. We will represent x

as a d-dimensional vector x , which lists out the point’s coordinates

on dimensions 1, 2, ..., d , respectively (in this order). Denote by |x |
the Euclidean norm of x (i.e., the distance between point x and the

origin). Set the instance space X = {x ∈ Rd | |x | ≤ 1}, and the

label space Y = {−1, 1}.
DefineH as the set of linear classifiers. Specifically, each classifier

(a.k.a., hypothesis) h ∈ H is described by a d-dimensional vectorw

such that h(x) equals 1 ifw · x ≥ 0, or −1 otherwise.
In the online model, the oracle setsU to the entire X × Y. As

such, no classifier inH is consistent with all the pairs inU. In other

words, for any h ∈ H, there is at least one (x ,y) ∈ U such that

h(x) , y (i.e., inconsistent classification).

No online algorithm can have a data-independent bound on the

number of mistakes4. However, there exist algorithms achieving

data-dependent bounds, namely, the number of mistakes is sensitive

to the actual sequence Π of instance-label pairs received from the

oracle. To explain, suppose that Π has length n, and that the i-th

pair in Π is (x i ,yi). Fix a d-dimensional vector w , 0 and a real

value γ > 0, each pair (x ,y) ∈ U defines a hinge loss:

Lw ,γ (x ,y) = max

{

0,γ − y · x ·w|w |

}

. (3)

The well-known algorithm Perceptron [37] makes a number of mis-

takes that can be bounded using the hinge losses of the points in Π.

One upper bound (Theorem 5.11 of [7]) is:

min
w ,γ

(

1

γ 2
+

2

γ

n
∑

i=1

Lw ,γ (x i ,yi)
)

(4)

3See the lecture notes at www.cs.cmu.edu/~avrim/ML98/lect0114
4The oracle can always make an algorithm err in every round, if the oracle knows the
algorithm.

where the minimization is over allw , 0 and all γ > 0. Note that

the above bound is insensitive to the ordering of the points in Π.

See also [13] for another similar bound.

In the non-i.i.d. model, after choosing a distribution D over

U = X×Y and certain dependence rules R, the oracle provides us

with a set S of (non-i.i.d.) n samples (x1,y1), ..., (xn ,yn). We want

to deploy Aonline = Perceptron to find a linear classifier h with small

empirical error ˆerrS (h). By the earlier discussion, Aonline enjoys a

WP mistake boundM that is at most (4). As before, whenM ≪ n,

our mission is to ensure provably low ˆerrS (h).

3 RELATED WORK

Online (classification) learning. The online model in Section 2.1

is known as the mistake bound model [27] (which is identical to

the equivalence query model [1]). Theoretically, the chief objective

is to understand how many mistakes are compulsory for the best

algorithm designed to solve a given learning problem. Significant

progress has been achieved — including algorithms with non-trivial

upper bounds and proofs of lower bounds — for many problems

of fundamental nature, most notably: k-CNF (the conjunction of

boolean literals problem in Section 2.3 is 1-CNF) [17, 27], k-DNF

[6, 17, 27, 43], k-decision list [18, 24, 29, 36, 38], k-parities [2, 3, 8, 24],

linear classification [13, 16, 26, 27, 29, 40], and so on. See [5, 39] for

additional problems on which interesting results are known.

Practically, the main focus of online (classification) learning has

been to develop algorithms that function nicely on realistic streams

of instance-label pairs (i.e., those likely to be encountered in reality),

although not necessarily endowed with a strong theoretical bound

on the worst stream. There is a very rich literature on solutions of

this sort; we refer the interested readers to the excellent surveys of

[20, 21, 30].

Online-to-batch conversion with the i.i.d. assumption. Such

conversion has been well understood for PAC-learning, i.e., when

the i.i.d. assumption does hold. Although the existing methods [9–

12, 23, 28, 46] differ considerably in details, their high-level intuition

can be grasped rather easily, as explained next.

Let S be a set of i.i.d. samples (x1,y1), ..., (xn ,yn). Given an online
algorithm Aonline , let us run it on the sequence (x1,y1), ..., (xn ,yn).
Recall from Section 2.1 that Aonline maintains a hypothesis hnow at

all times; therefore, the above execution produces n + 1 hypotheses

h0,h1, ...,hn , where h0 is the initial hnow before Aonline starts, and

hi (i ∈ [1,n]) is thehnow after processing sample (xi ,yi). As a crucial
observation behind all the existing methods, the probability that hi
(i ∈ [0,n − 1]) mis-predicts the next sample (xi+1,yi+1) is exactly
err(hi) since every sample is i.i.d. Therefore,

∑n−1
i=0 err(hi) is the

expected number of mistakes Aonline makes on (x1,y1), ..., (xn ,yn).
This relationship provides vital clues on how a good hypothesis

can be picked from h0, ...,hn−1.
Unfortunately, the above observation no longer holds in the non-

i.i.d. model. Overcoming the obstacle calls for new ideas, as is the

technical motivation of our paper.

Learning in the non-i.i.d. model. The main difficulty in getting

rid of the i.i.d. assumption lies in figuring out how to relax the

assumption to such an extent that allows rigorous theoretical anal-

ysis, yet in the meantime can be satisfied by practical applications.

Currently, the most successful relaxation is based on the theory of

stationary random variables, on which various generalization theo-

rems have been proved; see [15, 32–34, 44, 45] and the references

therein. Relaxations departing from the stationary theory have

also been attempted, e.g., [22, 31, 41, 42], although generalization

theorems appeared only recently [25].

Any of the generalization theorems mentioned earlier can be

combined with the results of this paper to upper bound the err(h)
of the hypothesis h returned by our techniques, as discussed in

Section 2.1.

4 THE FIRST SOLUTION

This section will present our first solution to Problem 1. Remember

that we are given (i) an online algorithm Aonline designed for a

problem characterized byX,Y,U, andH, and (ii) a non-i.i.d. sample

set S of size n where each sample comes fromU. We propose the

following algorithm to find a hypothesis h ∈ H using Aonline and S :

Algorithm I

1. initialize Aonline

2. repeat

/* an iteration */

3. for each pair (x ,y) ∈ S do

4. feed (x ,y) to Aonline to obtain the predicted label ŷ

5. if y , ŷ then remove (x ,y) from S

6. until no mistake was made in this iteration

7. return the current hnow of Aonline

The above strategy launches a series of iterations. Each iteration,

except the last one, shrinks S by deleting some instance-label pairs.

Specifically, at the beginning of an iteration, we order the pairs of

S arbitrarily, and then run Aonline on S by the ordering. For each

pair (x ,y) ∈ S , Aonline makes a label prediction ŷ. If the prediction

is correct, (x ,y) is retained; otherwise, we delete the pair from S ,

shrinking |S | by 1. The whole process finishes if Aonline makes

no mistakes in the current iteration; otherwise, a new iteration is

performed. Throughout Algorithm I, Aonline is initialized only once

(at Line 1). In particular, the execution of Aonline in a new iteration

continues the state of Aonline left over from the previous iteration.

The output is the final hypothesis hnow held by Aonline .

Theorem 1. The output hypothesis h of Algorithm I has empirical

error ˆerrS (h) at most M/n, where M is the WP mistake bound of

Aonline on S .

Proof. Instance-label pairs are deleted from S in succession.

Let Σ be the sequence by which those pairs are deleted. By how

Algorithm I runs, we know that h (which is the hnow of Aonline at

the end) correctly predicts all the pairs of S \ Σ. In other words,

ˆerrS (h) ≤ |Σ|/n.5
It remains to prove |Σ| ≤ M . Construct a permutation Π of S by

concatenating Σ with an arbitrary permutation of S \ Σ. Consider
executing Aonline in the online model as if the oracle had chosen Π

as the stream of instance-label pairs. Observe that, at the moment

right after Aonline has finished processing Σ, its hypothesis hnow
is exactly h. This implies no more mistakes by Aonline in the rest

of the execution. Therefore, the total number of mistakes on Π is

exactly |Σ|, which by Definition 1 is at mostM . �

5Note that ˆerr S (h) can be strictly less than |Σ |/n because h may be correct on some
of the pairs already removed.

Regarding computation time, the proof of Theorem 1 suggests

that there can be at mostM + 1 iterations, because each iteration

except the last one increases |Σ| by 1, while |Σ| is bounded by M .

Each iteration obviously processes at most |S | ≤ n pairs. Therefore,

the total CPU time is O(TnM), where T is the amount of time

required by Aonline to process one pair. The time complexity is

polynomial as long as T is polynomial.

5 A DUPLICATION TECHNIQUE

This section will present an algorithm with a more refined guar-

antee. Again, consider an online algorithm Aonline for a problem

characterized by X,Y,U, and H.

Definition 2. Let

• M0 be a fixed non-negative real value;

• M1 be a function that mapsU to non-negative real values.

Aonline is (M0,M1)-bounded if, for any set S of instance-label pairs

drawn fromU , Aonline has a WP mistake boundM satisfying

M ≤ M0 +

∑

(x,y)∈S
M1(x ,y). (5)

Phrased differently, if Aonline is (M0,M1)-bounded, the WP mis-

take boundM of Aonline on every (non-i.i.d.) sample set S is at most

the sum of (i) valueM0, and (ii) a non-negative contributionM1(x ,y)
from each (x ,y) ∈ S . The discussion below further illustrates this

using the two representative problems from Section 2.3:

Example. For conjunction of boolean literals, we noted an algorithm

Aonline with a data-independent mistake bound d + 1 on any S .

Aonline is (M0,M1)-bounded withM0 = d + 1, andM1(x ,y) = 0.

For linear classification, we noted that Perceptron has a data-

dependent mistake bound given in (4). The algorithm is therefore

(M0,M1)-boundedwhereM0 andM1 are defined by ad-dimensional

vectorw , 0 and a real value γ > 0:

M0 = 1/γ 2

M1(x ,y) = Lw ,γ (x ,y)

where Lw ,γ (x ,y) is given in (3). Notice that any (w,γ) gives a pair
of workable (M0,M1)! Therefore, for a specific S , one can actually

select the best (w,γ) that yields the lowestM0 +
∑

(x,y)∈S M1(x ,y)
to upper bound the algorithm’s WP mistake bound. �

Our second solution to Problem 1 generalizes the one in Section 4.

Algorithm II

1. choose an integer ϕ ≥ 1

2. create a multi-set S ′ from S by duplicating each (x ,y) ∈ S
ϕ times

3. run Algorithm I on S ′

4. return the hypothesis obtained by Algorithm I

Algorithm II does not require the knowledge ofM0 andM1, yet

ensures the following for all workable (M0,M1) simultaneously:

Theorem 2. For any (M0,M1) such thatAonline is (M0,M1)-bounded,
Algorithm II outputs a hypothesis h′ with empirical error ˆerrS (h′) at
most

1

n

(M0

ϕ
+

∑

(x,y)∈S
M1(x ,y)

)

. (6)

Proof. SinceAonline is (M0,M1)-bounded, itsWPmistake bound

M ′ on S ′ satisfies:

M ′ ≤ M0 +

∑

(x,y)∈S ′
M1(x ,y) = M0 + ϕ

∑

(x,y)∈S
M1(x ,y). (7)

By Theorem 1, the hypothesis h′ returned by Algorithm I at Line

3 has empirical error on S ′ at mostM ′/|S ′ |, or phrased differently,

h′ mis-predicts at mostM ′ pairs (x ,y) ∈ S ′.
Observe that if h′ mis-predicts a pair (x ,y) ∈ S , h′ mis-predicts

all the ϕ copies of (x ,y) in S ′. Therefore, h′ can mis-predict at most

M ′/ϕ pairs in S . The theorem thus follows from (7). �

Corollary 1. Algorithm II outputs a hypothesis h′ with empirical

error ˆerrS (h′) at most

min
(M0,M1)

1

n

(M0

ϕ
+

∑

(x,y)∈S
M1(x ,y)

)

.

where the minimum is taken over all (M0,M1) such that Aonline is

(M0,M1)-bounded.

Remark 1 (choice of ϕ). The CPU cost of Algorithm II is bounded

by O(ϕTnM). Therefore, any ϕ = poly(n,T) will guarantee ter-

mination in polynomial time. In Section 7.2, we will describe an

incremental approach that avoids the need of tuning this parameter.

Remark 2 (no empirical error on data-independent bounds).

For those problems such as conjunction of boolean literals that admit

an online algorithm whose WP mistake bound is at most a data-

independent value c , we can set M0 = c and M1(x ,y) = 0, as

demonstrated in the earlier example. By Theorem 2, we can ensure

empirical error strictly less than 1/n by setting ϕ = c + 1. Such

empirical error can only be 0 as |S | = n.

6 IMPROVING THE COMPETITIVE RATIO

This section will explain how to leverage an online algorithm to ob-

tain a hypothesis whose empirical error is competitive with respect

to the best hypothesis with the smallest empirical error.

Again, let Aonline be an online algorithm for a problem charac-

terized by X,Y,U, and H. We have obtained a set S of non-i.i.d.

samples. Denote byM theWPmistake bound ofAonline on S . Let h
∗

be the hypothesis in Hwith the lowest empirical error on S . Denote

bym∗ the number of instance-label pairs (x ,y) ∈ S mis-predicted

by h∗. Thus, ˆerrS (h∗) =m∗/n, which is either 0 or at least 1/n.
For any hypothesis h ∈ H, we define its competitive ratio to be

max{ ˆerrS (h), 1/n}
max{ ˆerrS (h∗), 1/n}

where the presence of 1/n makes sure (i) we never divide by 0,

and (ii) the competitive ratio is at least 1. A trivial claim following

Theorem 1 is that the hypothesis returned by Algorithm I has a

competitive ratio ofM .

Next, we establish a stronger claim by introducing conditional

WP mistake bounds. For each hypothesis h ∈ H, define
S(h) = {(x ,y) ∈ S | h(x) = y}

namely, the set of instance-pair pairs in S correctly predicted by h.

Definition 3. Fix an arbitrary hypothesis h ∈ H. The WP mis-

take bound of Aonline conditioned on h is defined to be the WP

mistake bound of Aonline on S(h).

Phrased differently, imagine shrinking S to S(h) by evicting all

the pairs mis-predicted by h from S . Now, get the WP mistake

bound of Aonline on S(h); this is the conditional WP mistake bound

of Aonline under h.

We will denote the above conditional bound asMh . The property

Mh ≤ M follows immediately from the fact S(h) ⊆ S , and the

definition of WP mistake bound. For some learning problems,Mh

can be far less thanM . An important example is linear classification:

Example. Let Aonline be the Perceptron algorithm. As explained

before, a classifier h ∈ H is described by a d-dimensional vector

w . That h is correct on all (x ,y) ∈ S(h) means y(w · x) ≥ 0. Define

γ = min(x,y)∈S (h) y
w ·x
|w | , i.e., the so-called margin of h. If γ > 0,

Perceptron makes at most 1/γ 2 mistakes on S(h) [37]; hence,Mh ≤
1/γ 2. This can be considerably smaller than the bound in (4). �

6.1 A weak algorithm

For the time being, let us focus on an arbitrary hypothesis h+ ∈
H, and assume a known upper bound Z of Mh+ . We now give

an algorithm to find a hypothesis whose empirical error can be

bounded using the empirical error of h+ and Z .

Algorithm III-weak

/* Z is an input integer */

1. S1 = S

2. for i = 1, 2, ... do

/* a super iteration */

3. run Algorithm I on Si until either (a) the algorithm

terminates normally, or (b) |Si | has decreased by Z + 1

4. if (a) happened then

return the hypothesis output by Algorithm I

5. Si+1 = Si (what remains from Line 3)

The algorithm runs in super iterations (to be distinguished with

the iterations in Algorithm I). Super iteration i ≥ 1 executes Algo-

rithm I from scratch on a set Si . The sets S1, S2, ... satisfy S = S1 ⊃
S2 ⊃ S3 ⊃ ... Note that super iteration i does not necessarily run

Algorithm I in full: it forces the algorithm to terminate as soon as

Z + 1 pairs have been removed from Si . The remaining Si is then

used as Si+1 for the next super iteration. If Algorithm I terminates

normally in the current super iteration, Algorithm III-weak finishes;

furthermore, if Algorithm I outputs hypothesis h, we return h as

the hypothesis found.

Lemma 1. The number of super iterations is at most 1+ |S \S(h+)|.

Proof. We argue that, in every super iteration i ≥ 1 except the

last, at least one instance-label pair (x ,y) wrongly predicted by h+

must have disappeared from Si . The lemma will then follow.

Collect the Z + 1 pairs that have been removed from Si in this

super iteration, and arrange them into a sequence Σ by the order

they were deleted by Algorithm I. Running Aonline on Σ will force

Aonline to make Z + 1 mistakes. If h+ is correct on all the pairs in

Σ, it means Σ ⊆ S(h+). But then, by Definition 3, Aonline can make

at mostMh+ ≤ Z mistakes on Σ, giving a contradiction. �

Corollary 2. The hypothesis returned by Algorithm III-weak has

empirical error at most (ˆerr (h+) + 1/n) · (Z + 1).

Proof. Since Z + 1 pairs are removed in each super iteration,

by Lemma 1, in total at most (1 + |S \ S(h+)|)(Z + 1) pairs can be

removed from S . The hypothesis h returned by Algorithm III-weak

correctly predicts all the remaining pairs in S . Hence, ˆerrS (h) is
bounded by (1+ |S \S(h+)|)(Z +1)/n = (1/n+ ˆerr (h+)) · (Z +1). �

Remark 1 (polynomial time). The CPU time of Algorithm III-

weak is at most O(n/(Z + 1)) times higher than that of Algorithm

I because O(n/(Z + 1)) is a trivial bound on the number of super

iterations.

Remark 2 (hypotheses captured). It is important to note that

Corollary 2 simultaneously holds for all h+ ∈ H satisfyingMh+ ≤ Z .

Indeed, we can substitute any such h+ in the above analysis.

6.2 Making the algorithm strong

We now drop all the assumptions behind Algorithm III-weak by

invoking it O(logn) times:

Algorithm III

1. for i = 1, 2, ..., ⌈log2 n⌉ do
2. run Algorithm III-weak with Z = 2i

3. hi ← the hypothesis obtained from Line 2

4. return the hypothesis among h1, ...,h ⌈log2 n ⌉ with the

smallest empirical error

Theorem 3. Algorithm III returns a hypothesis with empirical

error at most

min
h+∈H

(

ˆerr (h+) + 1

n

)

· (2Mh+ + 1).

Proof. Consider any h+ ∈ H. Let i be the smallest integer satis-

fying 2i ≥ Mh+ . By Corollary 2, ˆerr (hi) ≤ (1/n+ ˆerr (h+))·(2i +1) ≤
(1/n + ˆerr (h+)) · (2Mh+ + 1). The theorem follows from Line 4 of

the pseudocode. �

Recall that h∗ was defined earlier to be the hypothesis with

the smallest empirical error. The above theorem implies that the

hypothesis output by Algorithm III has a competitive ratio at most

2Mh∗ + 1. The constant 2 can be made arbitrarily close to 1 by

increasingZ with a smaller factor each time at Line 2. It can even be

made 1 by attempting all Z = 1, 2, ...,n, although this will increase

CPU cost n times (nevertheless still polynomial).

7 EXPERIMENTS

This section contains an empirical evaluation of the proposed al-

gorithms. We will first describe the experimentation settings in

Section 7.1 before presenting the results in Section 7.2.

7.1 Setup

Competing methods. Existing online-to-batch conversion meth-

ods are all designed for i.i.d. samples. For a comparison, we suggest

an approach to adapt an i.i.d.-method to work on a non-i.i.d. sample

set S . The idea is to generate an i.i.d. stream Σ by repeatedly and

independently taking an instance-label pair from S uniformly at

random (with replacement). We can then use an i.i.d. conversion

method to obtain a good hypothesis h from Σ. As a sufficiently long

Σ accurately represents S , h should work well on S too.

Algorithm II longest survival (a.k.a. pocket method) random stopping (a.k.a. leave-one-out)

 5

 7

 9

 11

0.02 0.06 0.16 0.32

error rate (%)

time (sec)

 1

 3

 5

 7

0.004 0.01 0.02 0.04

error rate (%)

time (sec)

 16

 24

 32

 40

0.006 0.02 0.06 0.24

error rate (%)

time (sec)

Alg III: err = 5.8% ±0.070%, time = 0.15 sec Alg III: err = 2.1% ±0.033%, time = 0.021 sec Alg III: err = 20% ±0.095%, time = 0.061 sec

(a) phishing (b) htru2 (c) magic

 15

 22

 29

 36

0.023 0.06 0.2 0.7

error rate (%)

time (sec)

 3

 7

 11

 14

0.05 0.1 0.5 1

error rate (%)

time (sec)

 14

 17

 20

 23

0.2 0.6 2 5.8

error rate (%)

time (sec)

Alg III: err = 18% ±0.058%, time = 0.19 sec Alg III: err = 5.0% ±0.021%, time = 0.5 sec Alg III: err = 15% ±0.026%, time = 3.8 sec

(d) creditcard (e) bankruptcy (f) a9a-adult

 0

 1

 3

 5

0.45 1 2 4

error rate (%)

time (sec)

 20

 26

 32

 38

1.5 5.0 15.0 42.0

error rate (%)

time (sec)

 9

 13

 17

 21

0.3 0.8 1.6 3.2

error rate (%)

time (sec)

Alg III: err = 1.3% ±0.022%, time = 4.6 sec Alg III: err = 21% ±0.14%, time = 17 sec Alg III: err = 13% ±0.10%, time = 3.2 sec

(g) w8a (h) virus-share (i) miniboone

 5

 8

 11

 13

0.13 0.3 0.6 1.1

error rate (%)

time (sec)

 4

 6

 8

 10

0.4 0.8 1.6 3.2

error rate (%)

time (sec)

 21

 27

 33

 39

2 5 15 45

error rate (%)

time (sec)

Alg III: err = 6.3% ±0.049%, time = 1.3 sec Alg III: err = 4.7% ±0.0055%, time = 4.3 sec Alg III: err = 23% ±0.023%, time = 18 sec

(j) ijcnn1 (k) cod-rna (l) covtype

 18

 24

 30

 36

8 25 60 180

error rate (%)

time (sec)

 7

 12

 17

 22

20 40 100 200

error rate (%)

time (sec)

 33

 38

 43

 48

30 70 210 600

error rate (%)

time (sec)

Alg III: err = 21% ±0.0024%, time = 82 sec Alg III: err = 9.3% ±0.0015%, time = 287 sec Alg III: err = 35% ±0.0053%, time = 279 sec

(m) susy (n) hepmass (o) higgs

Figure 1: Empirical error vs. execution time: linear classifiers

We applied the idea to two popular i.i.d. conversion methods. Re-

call that running an online algorithm Aonline on Σ produces |Σ| + 1
hypotheses h0, ...,h |Σ | .6 Random stopping — also called leave-one-

out [19] — chooses a hypothesis from {h0, ...,h |Σ |−1} uniformly at

random. Longest survival — also called the pocket method [14] —

picks the hypothesis that survived for the longest streak (a hypoth-

esis h survived for a streak of length ℓ if h = hi = hi+1 = ... = hi+ℓ
for some i). Both methods have rigorous theoretical guarantees; see

Ch. 5.9 of [7] for a nice discussion.

The learning problems and Aonline . Our techniques are applica-

ble to any online algorithm Aonline on any classification problem.

We experimented with Aonline = Perceptron on linear classification

for three reasons. First, linear classification is arguably the most

important problem in machine learning, and the foundation of

non-linear classification, the kernel method, neural networks, etc.

6Specifically, h0 is the initial hypothesis, while hi (i ≥ 1) is the hypothesis of Aonline

after the i-th sample in Σ.

id name cardinality n dim. d source

1 phishing 11,055 68 LS

2 htru2 17,898 8 UCI

3 magic 19,020 10 UCI

4 creditcard 30,000 23 UCI

5 bankruptcy 43,405 64 UCI

6 a9a-adult 48,842 123 LS

7 w8a 64,700 300 LS

8 virus-share 107,856 482 UCI

9 miniboone 130,064 50 UCI

10 ijcnn1 141,691 22 LS

11 cod-rna 488,565 8 LS

12 covtype 581,012 54 LS

13 susy 5,000,000 18 LS

14 hepmass 10,500,000 27 UCI

15 higgs 11,000,000 28 LS

Table 1: The datasets deployed in the experiments

Second, Perceptron is by far the most influential online algorithm for

linear classification. Third, Perceptron and linear classification are

both simple enough to avoid unexpected technical factors affecting

Algorithm II longest survival (a.k.a. pocket method) random stopping (a.k.a. leave-one-out)

 3

 4

 5

 6

0.65 1.5 4 9

error rate (%)

time (sec)

 0

 2

 4

 7

0.03 0.06 0.12 0.24

error rate (%)

time (sec)

12

17

22

26

0.2 0.5 1 2

error rate (%)

time (sec)

Alg III: err = 3.7% ±0.11%, time = 6.6 sec Alg III: err = 2.1% ±0.013%, time = 0.18 sec Alg III: err = 14.3% ±0.11%, time = 0.52 sec

(a) phishing (b) htru2 (c) magic

16

23

30

38

0.22 0.8 2.5 10

error rate (%)

time (sec)

4

6

8

10

1.8 5 15 53

error rate (%)

time (sec)

12

16

20

11 40 160 660

error rate (%)

time (sec)

Alg III: err = 18% ±0.064%, time = 2.2 sec Alg III: err = 4.9% ±0.063%, time = 23 sec Alg III: err = 14% ±0.051%, time = 110 sec

(d) creditcard (e) bankruptcy (f) a9a-adult

0

1

2

3

80 250 750 2130

error rate (%)

time (sec)

15

20

24

28

1000 3000 9000 25000

error rate (%)

time (sec)

6

9

12

15

12 25 50 108

error rate (%)

time (sec)

Alg III: err = 0.76% ±0.014%, time = 589 sec Alg III: err = 17% ±0.15%, time = 6522 sec Alg III: err = 10% ±0.046%, time = 112 sec

(g) w8a (h) virus-share (i) miniboone

1

2

3

2.4 5 10 22

error rate (%)

time (sec)

3

5

7

8

4 6 10 16

error rate (%)

time (sec)

18

22

26

31

52 150 500 1600

error rate (%)

time (sec)

Alg III: err = 1.9% ±0.023%, time = 22 sec Alg III: err = 4.0% ±0.0070%, time = 33 sec Alg III: err = 20% ±0.040%, time = 620 sec

(j) ijcnn1 (k) cod-rna (l) covtype

18

24

30

38

120 300 1000 2900

error rate (%)

time (sec)

7

9

11

14

605 1500 4000 9000

error rate (%)

time (sec)

28

33

38

43

620 3000 15000 45000

error rate (%)

time (sec)

Alg III: err = 20% ±0.0070%, time = 1093 sec Alg III: err = 8.3% ±0.0030%, time = 6147 sec Alg III: err = 31% ±0.030%, time = 5819 sec

(m) susy (n) hepmass (o) higgs

Figure 2: Empirical error vs. execution time: quadratic classifiers

our comparison, yet interesting enough to admit a sound theory

with mathematical rigor.

We also experimented with quadratic classification as an exten-

sion of linear classification, still using Perceptron as the choice of

Aonline (Appendix C).

Data. We deployed 15 real datasets as summarized in Table 1.7 See

Appendix A for how the data were preprocessed.

Implementation. Heuristics incorporated in implementing the

proposed algorithms are discussed in Appendix B. In particular,

random permutation was adopted in Algorithm I which thus be-

came randomized (and, so did Algorithms II and III).

Measurement. For our solutions, we concentrated on Algorithms

II and III because Algorithm I is a special case of the above two.

Every measurement was repeated at least 20 times with the mean

(if crucial, also the standard deviation) reported.

7LS is at http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets, while UCI is at
http://archive.ics.uci.edu/ml/datasets.html.

Environment. Our machine had an Intel CPU at 2.20GHz and

16GB memory. The OS was CentOS Linux 7.

7.2 Results

Linear classification.We ran Algorithm II by changing its param-

eter ϕ incrementally. To start with, ϕ is set to 1 initially, but when

Algorithm II finishes, we continue its execution by raising ϕ to 2,

which can be easily achieved by adding another copy of the dataset

on the fly (in fact, increasing the counter of each instance-label pair

by 1; see Appendix B). Likewise, when the algorithm finishes again,

another copy is added, effectively bumping ϕ to 3, and so on. In

practice, the above approach removes the need of parameter tuning

because when the algorithm has returned a hypothesis h on some

ϕ, one can check the empirical error of h before deciding whether

to increase ϕ. At the end, the best h of all ϕ is returned.

The blue curves in Figure 1 show the empirical error of Algorithm

II as a function of running time. Markers on each curve indicate

the empirical errors of the hypotheses obtained at ϕ = 1, 2, 3, 4,

5, 10, 20, 40, 80, and 100, respectively. Each marker is associated

with a vertical bar representing the amount of standard deviation

(from at least 20 runs). The x-coordinate of the marker is the mean

elapsed time until the algorithm terminated on the designated ϕ

value (x-axis in log scale). Algorithm II exhibited excellent perfor-

mance, even at ϕ = 1. Increasing ϕ did help to improve the accuracy,

sometimes quite significantly, e.g., in Figure 1(i). The standard devi-

ation in empirical error is exceedingly small, suggesting very stable

performance.

The result of Algorithm III is presented under each diagram in

texts. Its empirical error is in the form mean ± standard dev.; and
the time shown is the mean. The accuracy was very similar to that

of Algorithm II, and was also extremely stable, whereas the running

time was on average that of Algorithm II with ϕ = 60.

The green markers8 and red curves illustrate respectively the

results for random stopping and longest survival, whose running

time depends on the length of Σ (Section 7.1). Their empirical errors

were in general much higher, and suffered quite heavily from large

deviation (especially so for random stopping).

Quadratic classification. Figure 2 shows the results on quadratic

classification in the same style. Overall, the earlier observations

from Figure 1 are re-confirmed in this context. Note that Algorithm

II benefited more significantly from the increase of ϕ.

8 CONCLUSIONS

Traditional online-to-batch conversion is based on the assumption

that the samples in batch learning are i.i.d. In reality the assumption

seldom holds, in which case existing conversionmethods loose their

mathematical rigor, creating a serious issue in analyzing the quality

of learning. This paper remedies the issue by proposing a suite of

techniques to carry out the conversion on non-i.i.d. samples with

strong theoretical guarantees. Our techniques leverage an online

algorithm as a black box and applies to all classification problems,

even if the algorithm is only empirically efficient on that problem.

The practical usefulness of the proposed solutions is confirmed by

an extensive experimentation evaluation with real data.

REFERENCES
[1] Dana Angluin. 1987. Queries and Concept Learning. Machine Learning 2, 4 (1987),

319–342.
[2] Arnab Bhattacharyya, Ameet Gadekar, and Ninad Rajgopal. 2015. On learning

k-parities with and without noise. CoRR abs/1502.05375 (2015).
[3] Arnab Bhattacharyya, Ameet Gadekar, and Ninad Rajgopal. 2018. Improved

Learning of k-Parities. In Proceedings of International Conference on Computing
and Combinatorics (COCOON). 542–553.

[4] Avrim Blum. 1994. Separating Distribution-Free and Mistake-Bound Learning
Models over the Boolean Domain. 23, 5 (1994), 990–1000.

[5] Avrim Blum. 1996. On-line Algorithms inMachine Learning. InOnline Algorithms,
The State of the Art. 306–325.

[6] Avrim Blum, Lisa Hellerstein, and Nick Littlestone. 1995. Learning in the Presence
of Finitely or Infinitely Many Irrelevant Attributes. JCSS 50, 1 (1995), 32–40.

[7] Avrim Blum, John Hopcroft, and Ravindran Kannan. 2018. Foundations of Data
Science. Book available at http://www.cs.cornell.edu/jeh/book.pdf.

[8] Harry Buhrman, David García-Soriano, and Arie Matsliah. 2010. Learning parities
in the mistake-bound model. IPL 111, 1 (2010), 16–21.

[9] Nicolo Cesa-Bianchi, Alex Conconi, and Claudio Gentile. 2004. On the General-
ization Ability of On-Line Learning Algorithms. IEEE Trans. Information Theory
50, 9 (2004), 2050–2057.

[10] Nicolo Cesa-Bianchi and Claudio Gentile. 2008. Improved Risk Tail Bounds for
On-Line Algorithms. IEEE Trans. Information Theory 54, 1 (2008), 386–390.

8No line connects the greenmarkers because they do not demonstrate obvious patterns.

[11] Ofer Dekel. 2008. From Online to Batch Learning with Cutoff-Averaging. In NIPS.
377–384.

[12] Ofer Dekel and Yoram Singer. 2005. Data-Driven Online to Batch Conversions.
In NIPS. 267–274.

[13] Yoav Freund and Robert E. Schapire. 1999. Large Margin Classification Using the
Perceptron Algorithm. Machine Learning 37, 3 (1999), 277–296.

[14] S.I. Gallant. 1986. Optimal linear discriminants. In International Conference on
Pattern Recognition. 849–852.

[15] Wei Gao, Xin-Yi Niu, and Zhi-Hua Zhou. 2016. Learnability of Non-I.I.D. In
Proceedings of Asian Conference on Machine Learning (ACML). 158–173.

[16] Claudio Gentile. 2001. A New Approximate Maximal Margin Classification
Algorithm. JMLR 2 (2001), 213–242.

[17] David Haussler. 1988. Quantifying Inductive Bias: AI Learning Algorithms and
Valiant’s Learning Framework. Artif. Intell. 36, 2 (1988), 177–221.

[18] David P. Helmbold, Robert H. Sloan, and Manfred K. Warmuth. 1990. Learning
Nested Differences of Intersection-Closed Concept Classes. Machine Learning 5
(1990), 165–196.

[19] David P. Helmbold and Manfred K. Warmuth. 1995. On Weak Learning. JCSS 50,
3 (1995), 551–573.

[20] Steven C. H. Hoi, Doyen Sahoo, Jing Lu, and Peilin Zhao. 2018. Online Learning:
A Comprehensive Survey. CoRR abs/1802.02871 (2018).

[21] Lakhmi C. Jain, Manjeevan Seera, Chee Peng Lim, and Pagavathigounder Bala-
subramaniam. 2014. A review of online learning in supervised neural networks.
Neural Computing and Applications 25, 3-4 (2014), 491–509.

[22] Rajeeva L Karandikar and M. Vidyasagar. 2002. Rates of uniform convergence
of empirical means with mixing processes. Statistics & Probability Letters 58, 3
(2002), 297–307.

[23] Norbert Klasner and Hans Ulrich Simon. 1995. From Noise-Free to Noise-Tolerant
and from On-line to Batch Learning. In COLT. 250–257.

[24] AdamR. Klivans and RoccoA. Servedio. 2006. TowardAttribute Efficient Learning
of Decision Lists and Parities. JMLR 7 (2006), 587–602.

[25] Vitaly Kuznetsov and Mehryar Mohri. 2017. Generalization bounds for non-
stationary mixing processes. Machine Learning 106, 1 (2017), 93–117.

[26] Yi Li and Philip M. Long. 2002. The Relaxed Online Maximum Margin Algorithm.
Machine Learning 46, 1-3 (2002), 361–387.

[27] Nick Littlestone. 1987. Learning Quickly When Irrelevant Attributes Abound: A
New Linear-threshold Algorithm. Machine Learning 2, 4 (1987), 285–318.

[28] Nick Littlestone. 1989. From On-Line to Batch Learning. In COLT. 269–284.
[29] Philip M. Long and Rocco A. Servedio. 2006. Attribute-efficient learning of

decision lists and linear threshold functions under unconcentrated distributions.
In NIPS. 921–928.

[30] Viktor Losing, Barbara Hammer, and Heiko Wersing. 2018. Incremental on-line
learning: A review and comparison of state of the art algorithms. Neurocomputing
275 (2018), 1261–1274.

[31] Dharmendra S. Modha and Elias Masry. 1998. Memory-Universal Prediction
of Stationary Random Processes. IEEE Trans. Information Theory 44, 1 (1998),
117–133.

[32] Mehryar Mohri and Afshin Rostamizadeh. 2007. Stability Bounds for Non-i.i.d.
Processes. In NIPS. 1025–1032.

[33] Mehryar Mohri and Afshin Rostamizadeh. 2008. Rademacher Complexity Bounds
for Non-I.I.D. Processes. In NIPS. 1097–1104.

[34] Mehryar Mohri and Afshin Rostamizadeh. 2010. Stability Bounds for Stationary
phi-mixing and beta-mixing Processes. JMLR 11 (2010), 789–814.

[35] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. 2018. Foundations
of machine learning. MIT Press.

[36] Ziv Nevo and Ran El-Yaniv. 2002. On Online Learning of Decision Lists. JMLR 3
(2002), 271–301.

[37] Frank Rosenblatt. 1958. The Perceptron: A Probabilistic Model for Information
Storage and Organization in the Brain. Psychological Review 65, 6 (1958), 386–408.

[38] Rocco A. Servedio. 2000. Computational Sample Complexity and Attribute-
Efficient Learning. JCSS 60, 1 (2000), 161–178.

[39] Shai Shalev-Shwartz. 2012. Online Learning and Online Convex Optimization.
Foundations and Trends in Machine Learning 4, 2 (2012), 107–194.

[40] Shai Shalev-Shwartz and Yoram Singer. 2005. A New Perspective on an Old
Perceptron Algorithm. In COLT. 264–278.

[41] Ingo Steinwart and Andreas Christmann. 2009. Fast Learning from Non-i.i.d.
Observations. In NIPS. 1768–1776.

[42] Ingo Steinwart, Don R. Hush, and Clint Scovel. 2009. Learning from dependent
observations. J. Multivariate Analysis 100, 1 (2009), 175–194.

[43] Ryuhei Uehara, Kensei Tsuchida, and Ingo Wegener. 1997. Optimal Attribute-
Efficient Learning of Disjunction, Parity and Threshold Functions. In Proceedings
of European Conference on Computational Learning Theory. 171–184.

[44] Mathukumalli Vidyasagar. 2002. A theory of learning and generalization: with
applications to neural networks (2nd ed.). Springer.

[45] Bin Yu. 1994. Rates of Convergence for Empirical Processes of Stationary Mixing
Sequences. Annals of Probability 22, 1 (1994), 94–116.

[46] Tong Zhang. 2005. Data Dependent Concentration Bounds for Sequential Predic-
tion Algorithms. In COLT. 173–187.

APPENDIX

A DATA PREPROCESSING

Each dataset contains d-dimensional points (d shown in Table 1)

each of which is associated with a label. All labels are binary, except

virus-share, where a label is a numeric value between 0 and 1. We

changed each label in virus-share to 1 if it was at least 0.5, or −1
otherwise.

Normalization was carried out on each dataset S . For dimension

i ∈ [1,d], we first obtained the mean meani and standard deviation

stdi of the coordinates in S . Then, each point p ∈ S was normalized

to the point p′ with p′[i] = (p[i] −meani)/stdi , for all i ∈ [1,d].
Finally, we added one more dimension where every point had

coordinate 1, as is a standard step in linear classification.

B HEURISTICS FOR ALGORITHMS I, II, III

I. The input set S is randomly permuted before the algorithm starts.

II. As discussed in Section 5, S ′ unions ϕ copies of S , but this does

not imply a ϕ-fold increase in space consumption. It suffices keep a

counter for every instance-label pair (x ,y) ∈ S to record how many

copies of (x ,y) still remain in S ′. At the beginning, all counters are
ϕ. When a copy of (x ,y) is removed, its counter decreases; when

the counter reaches 0, no more copies of (x ,y) exist in S ′.
Algorithm II permits the ϕ to be increased at any time during

execution. Specifically, to increase ϕ from ϕ1 to ϕ2, it suffices to add

ϕ2 − ϕ1 to each counter. No other state of the algorithm needs to

be altered.

III. In the experiments we doubled Z from n/1000 to (the first value
at least) n. This runs Algorithm III-weak roughly 10 (≈ log2 1000)

times.

C QUADRATIC CLASSIFICATION
IMPLEMENTATION

Linear classification can be integrated with the kernel method to

perform non-linear classification. Define X = Rd , i.e., the entire
d-dimensional space, Y = {−1, 1}, andU = X ×Y.

A kernel function K : X × X → R has the property that, for

any points p, q in Rd , K(p,q) equals the dot product of two d ′-
dimensional vectorsΦ(p),Φ(q), whereΦ : Rd → Rd ′ is a non-linear
transformation that converts a d-dimensional point into some d ′-
dimensional feature space.

For example, a polynomial kernel has the form:

K(p,q) = (p · q + 1)c

for some constant c ≥ 1. The corresponding feature space has

dimensionality d ′ =
(d+c
c

)

. To illustrate, consider d = 2 and c = 2,

for which:

(p · q + 1)2 = (p[1]q[1] + p[2]q[2] + 1)2

= p[1]2q[1]2 + p[2]2q[2]2 + 2(p[1]p[2])(q[1]q[2])
+2p[1]q[1] + 2p[2]q[2] + 1

= Φ(p) · Φ(q)
where Φ(x) converts a 2D point x to a 6D one:

(x[1]2,x[2]2,
√
2x[1]x[2],

√
2x[1],

√
2x[2], 1). (8)

Given a set S of samples fromU, define Φ(S) = {ϕ(x) | x ∈ S},
i.e., the set of converted points. The learning onΦ(S) returns a linear
classifier in the feature space characterized by a d ′-dimensional

vectorw ′. This yields a non-linear classifier in the original space.

For instance, in the example of (8), considerw ′
= (1, 2, 3, 4, 5, 6),

which determines the following quadratic classifier h in the original

2D space: h(x) = 1 if

x[1]2 + 2x[2]2 + 3
√
2x[1]x[2] + 4

√
2x[1] + 5

√
2x[2] + 6 ≥ 0

or −1, otherwise.
In our experiments with quadratic classification, c = 2, andw ′

was obtained by running Perceptron on Φ(S). Naive generation of

Φ(S) requires d ′ = Θ(
(d
2

)

) = Θ(d2) space for each point, which

is prohibitive for large d . We avoided the issue by generating the

coordinates of ϕ(p) on demand for each p ∈ S . It then suffices to

store S itself and the weight vectorw ′ maintained by Perceptron in

the feature space.

