
PHYS3021 Quantum Mechanics I Problem Set 3
Due: 26 October 2017 (Thursday) “T+2” = 30 October 2017 (Monday)
All problem sets should be handed in not later than 5pm on the due date. Drop your assignments into the
PHYS3021 box outside Rm.213.
Please work out the steps of the calculations in detail. Discussions among students are highly encouraged, yet it
is expected that we do your homework independently.

3.0 Reading Assignment. (Don’t need to hand in everything for this item.) Chapter IV discussed operators
and how to write down the Hamiltonian operator systematically. For each operator, there is an eigenvalue
problem. TISE turns out to the the eigenvalue problem of Ĥ. We took a detour to go through 180 years
of classical mechanics, aiming at pointing out what Lagrangian mechanics does to define the conjugate
momentum to a coordinate and what Hamiltonian is and how it leads to the Poisson brackets, which
were taken by Dirac to ”go quantum”. This helps us understand Schrödinger’s way of expressing the
position and momentum operators is one way of fulfilling the necessary commutator [x̂, p̂] = ih̄. In
addition, Hamiltonian mechanics helps us understand why and how other classical mechanical quantities
can be written into a QM operators. The eigenvalue problem of QM operator Â is important in that the
eigenvalues are the only possible measurement outcomes of the quantity A. In Chapter V, we solved the
1D infinite well (1D box) problem exactly. From the whole set of energy eigenfunctions, we observed the
orthogonality and orthonormal properties. These are bound states, infinite many of them. Any function
(same boundary conditions) can be expanded in terms of the energy eigenfunctions and the expansion
coefficients have formulas to plug. This is the same for other QM operators. We explained what expectation
value and uncertainty in QM means, based on measurements on identically prepared copies of system with
one on a copy only. In QM, uncertainties are rigorously defined and one can calculate them. We then go
further into measurement theory, pointing out the probability of getting an eigenvalue ai of the quantity
A is the |ci|2 in expansion the wavefunction under measurement in terms of the eigenfunctions φi of Â.
We also discussed the time evolution of the energy eigenfunctions and pointed out they are stationary
states. Generally, the expectation value 〈A〉 changes in time. Chapter VI will do the 1D finite well and
harmonic oscillator problems.

Chapters in Griffiths’ An introduction to quantum mechanics, Rae’s Quantum Mechanics, and McQuarrie’s
Quantum Chemistry are good places to look up more discussion.

3.1 More on Angular Momentum Operators (See SQ14)

(a) In class notes, we wrote down the operators for the components of the angular momentum L̂x, L̂y,

L̂z. TA worked out the magnitude squared L̂2 and its commutators in SQs. Find the commutator
[L̂y, L̂z]. Write down the other two cyclic commutators of the components.

(b) Let’s define (don’t worry about what they mean for the moment) two operators

L̂+ = L̂x + iL̂y , L̂− = L̂x − iL̂y (1)

(i) Show that L̂+L̂− = L̂2 − L̂2
z + h̄L̂z

(ii) Find [L̂z, L̂+] in terms of L̂+

(ii) Find [L̂z, L̂−] in terms of L̂−

[Remark: You just did a very important exercise for QM angular momentum theory. Carry the
answers with you.]

3.2 1D Box: Orthogonality of energy eigenfunctions and ∆x ·∆p for all ψn(x)

We solved the set of energy eigenfunctions and their eigenvalues for 1D Box.

(a) Take any two eigenfunctions and show explicitly (by doing integration) that they are orthogonal
to each other.

(b) We did ∆x and ∆p for the ground state ψ1(x) in class notes. Here, you will work on all ψn(x) by
applying the formula for getting expectation values. Evaluate

(i) 〈x〉, (∆x)2, and ∆x for all energy eigenfunctions labelled by n.

(ii) 〈p〉, (∆p)2, and ∆p for all energy eigenfunctions labelled by n.
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(iii) ∆x ·∆p for all energy eigenfunctions labelled by n.

[Remark: You knocked out all position-momentum uncertainty problems for 1D Box eigenfunctions
in one shot.]

3.3 Engineering the C1–C2 gap in a quantum well

Particle-in-a-box can be partially realized by having the box being a thin piece of semiconductor (GaAs
for example) sandwiched between two thick layers of another material.

A particular property of semiconductors is that electrons living in them have a smaller mass. Usually, the
(effective) mass of electrons is about meff ∼ 0.05me in semiconductors, where me is the usual electron
mass. It is this property that gives us fast electronics in semiconductor devices. After all, particle of
lighter mass runs faster.

A client comes to you and asks for the specification of a device that requires a 1 eV “gap” between
the ground state (labelled C1) and the first excited state (labelled C2). Estimate the thickness of the
semiconductor region (forming the 1D box) so that the C1→C2 transition is about 1 eV.

3.4 1D Box moved to another place

Let’s move the 1D infinite well (1D Box) of width a to be centered at x = 0..

(a) We know that the ground state should be symmetric (or called even) about x = 0. Previously, we
had the wavefunction as a sine function when the well is placed in 0 < x < a. Describe how to
modify (or “copy”) the result when the box is shifted.

(b) Hence, describe how you could modify (or copy) the whole set of energy eigenfunctions when the
box is shifted. Show explicitly that your shifted eigenfunctions indeed have the properties of bring
alternating between symmetric (even) and antisymmetric (odd) functions as the energy goes up. [If
you can’t modify the known results, you may solve them as a new problem.]

3.5 1D box ground state - What are its momentum components? (See Problem 2.5 and SQ17)

This problem is slightly tedious in mathematics (Fourier transform), but you did a similar one in Problem
2.5. It is an important problem in that it is related to a common misconception about the momentum
components in the energy eigenstates in a 1D box.

(a) Consider shifting the box of width a to be centered at x = 0 (Problem 3.4(a)). For the normalized
ground state wavefunction ψ1(x), find the Fourier transform F (k).

(b) We again take |F (k)|2dk as the probability of finding the wavevector k to be in the interval k to k+dk.
(This is the same as in Problem 2.5, solutions posted.) Sketch |F (k)|2 versus k. Hence, evaluate
the mean 〈k〉, the variance (∆k)2, the uncertainty ∆k and hence the uncertainty in momentum
∆p = h̄∆k.

[Important remark: Many students (and some authors) through that with a cosine (or sine) function
like cos(kx), there are only two components of k, namely +k and −k, as they were thinking about
writing cos and sin into sum or difference of exponentials. Here, you just did the Fourier transform
of ψ1(x) and saw that there are many more k-components. The point is that the zero parts of ψ1(x)
outside the well/box really matters. These zero parts make ψ1(x) a localized wave packet. We need
many more k’s (thus wavelengths) for mutual cancellations to achieve zero wavefunction outside the
well.]

(c) A student asked why the operator Â should be placed between two wavefunctions in calculating
expectation values. The answer is that by doing so, the result makes sense and agrees with exper-
iments. Many find it not convincing (but I do, see class notes Chapter V Part 5). Given that you
just calculated ∆p using a long and formal way in part (b), re-do the calculation for ∆p by plugging
into expectation value formula

〈A〉 =

∫ ∞
−∞

ψ∗(x)Âψ(x)dx , (2)

using the state ψ1(x) without going through Fourier transform. You may copy result from Problem
3.2 into here. This part also serves to show that plugging expectation formula is a short cut.
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(d) If part (c) is still unconvincing, do a wrong calculation by imposing

〈A〉guess =

∫ ∞
−∞

Âψ∗(x)ψ(x)dx (this is wrong!) (3)

so that Â operates on the product |ψ(x)|2, instead of the correct formula in Eq. (2), to obtain ∆p
for the ground state ψ1(x) and check results against parts (b) and (c). [Note: Not often points are
given for wrong calculations.]

3.6 Be very careful in measurements and calculations - See if this can confuse you (See SQ18)

We stressed in class the physical meaning of the expectation value 〈A〉 and the uncertainty (∆A) is related
to measurements on identical copies of a system and each copy is measured only once. Here, we make use
of the 1D box energy eigenfunctions. Ignore any consideration on time evolution in this problem.
If you don’t want to do some integrals, you may define some symbols for them.

An experimentalist prepared a huge number of identical copies of a state of the form

Ψ(x) =

√
2

3
ψ1(x) +

√
1

3
ψ2(x) (4)

where ψ1(x) is the normalized ground state wavefunction of 1D box and ψ2(x) is the first excited state
wavefunction. You may put the box wherever you like.

Case A: A student Alice separates the copies into three equal parts. For 1/3 of the copies, measure-
ments on the energy E are made (system thrown away after measured once). For another 1/3 of the
copies, she measures the position x (and throws copy away after a measurement). For the remaining 1/3,
measurements on momentum p are made (throws away after measurement). So, she has three sets of data.

(a) Sketch the distribution of the data on the energy measurements. Hence, find the mean energy 〈E〉
and the uncertainty (∆E)?

(b) From the two other sets of data, Alice could obtain the uncertainties in position ∆x and in momentum
∆p. What will Alice get for ∆x ·∆p ?

Case B: A student Bob first measures the energy of each copy. He keeps the copies after measurements.
He then sorts the copies into two groups according to the energy outcomes. For Group 1 of energy E1, he
measures the position on half of the group (one measurement per copy) and the momentum on the other
half of the group (one measurement per copy). He does the same for the Group 2 of energy E2.

(c) Find ∆x ·∆p for Group 1.

(d) Find ∆x ·∆p for Group 2.

(e) But Bob’s supervisor doesn’t think that there should be two values of ∆x·∆p for the samples (Eq. (4))
that s/he prepared. So Bob thought that he should take into account of the sample sizes of Group
1 and Group 2 and do some weighting/averages. Try a reasonable weighting scheme and compare
result with part (b).

(f) Write a short paragraph to point out why ∆x · ∆p’s in (b), (c), (d) are in principle different
quantities and what they really refer to?

3.7 Time evolution and possible time-dependent properties

Consider the state Ψ(x) in Eq. (4) for a 1D Box system as the initial wavefunction Ψ(x, 0) at some time
t = 0.

(a) What is Ψ(x, t) at time t?

(b) Find the probability density |Ψ(x, t)|2. Sketch |Ψ(x, t)|2 as a function of x for a few different
times t to show the key feature.

(c) Important physics here. Evaluate 〈x〉 using Ψ(x, t) and describe how 〈x〉 changes in time.
[Some integrals might be found in previous problems.]

(d) If the particle carries a charge q, what would happen when it is in the state Ψ(x, t) in which its
mean position 〈x〉 behaves as in part (c)? [Hint: Think along classical EM theory.]

(e) Go back to Ψ(x, t) in part (a). Find the energy expectation value 〈E〉. Will it change with time?
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