The growth of high-quality tin-based perovskite films remains a grand challenge due to the uncontrollable crystallization kinetics. Here, we report a facile strategy to realize an epitaxial-like growth of highly oriented tin-based perovskite films with the assistance of perovskite quantum dots (PQDs). Synchrotron-based in situ X-ray scattering results reveal that PQDs can act as nucleation centers to promote the growth of highly oriented perovskite crystals for both FASnI3 and MASnI3 systems.… Read More
Research Highlights: Computational Chemistry-Assisted Design of Non-Fullerene Acceptor Enables 17.4% Efficiency in High-Boiling-Point Solvent Processed Binary Organic Solar Cells
Designing new high-performance non-fullerene acceptors is the key driving force for the development of organic solar cells (OSCs). In this work, a new acceptor, BOEH‑4Cl, was designed based on the end-group chlorination of L8-BO. Theoretical calculations successfully predicted the expected experimental results based on the optoelectronic properties of BOEH-4Cl and L8-BO and intermolecular interaction of PM6/BOEH-4Cl or L8-BO.… Read More
Recent News: Yuhao Li successfully passed the defense!
On Aug 8th, 2022, Yuhao Li successfully passed the defense! Congratulations, Dr. Li!
Research Highlights: Pushing the Efficiency of High Open-Circuit Voltage Binary Organic Solar Cells by Vertical Morphology Tuning
The tuning of vertical morphology is critical and challenging for organic solar cells (OSCs). In this work, a high open-circuit voltage (VOC) binary D18-Cl/L8-BO system is attained while maintaining the high short-circuit current (JSC) and fill factor (FF) by employing 1,4-diiodobenzene (DIB), a volatile solid additive. It is suggested that DIB can act as a linker between donor or/and acceptor molecules, which significantly modifies the active layer morphology.… Read More
Research Highlights: ZnO electron transporting layer engineering realized over 20% efficiency and over 1.28 V open-circuit voltage in all-inorganic perovskite solar cells
Cesium lead based all-inorganic perovskite solar cells (PSCs) are promising candidates for tandem solar cells owing to their favorable thermal stability and suitable bandgap. However, to exploit the advantage to the full, there is still huge room to reduce energy loss and enhance the VOC. In this work, low-temperature processed ZnO was developed as an ETL alternative.… Read More