
Damped harmonic motion

March 23, 2016

Harmonic motion is studied in the presence of a
damping force proportional to the velocity. The
complex method is introduced, and the different
cases of under-damping, over-damping and critical
damping are analyzed.
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1 Introduction and simple
analysis

1.1 The model

A physical oscillator (e.g., a mass m tied to a spring
with force constant k) after being set into motion
would gradually lose energy, and the amplitude of
motion would decrease with time. The model of
simple harmonic motion (SHM) is obviously inad-
equate for such a situation. The loss of energy can
be modelled by the addition of a damping or vis-
cous force Fv that is opposite to the velocity, and

has a magnitude proportional to the velocity v = ẋ:

Fv = − b dx
dt

(1)

so that the equation of motion is

m
d2x

dt2
= − kx− b dx

dt

or (
d2

dt2
+ α

d

dt
+ ω2

0

)
x(t) = 0 (2)

where

α =
b

m
, ω2

0 =
k

m
(3)

The special case α = 0 reduces to SHM. This mod-
ule studies motion described by (2).

1.2 Numerical solution

A numerical solution is shown in the spreadsheet
eqm-d1.xls. The sheet gives the motion for α =
0.3, ω2

0 = 4.0 and initial conditions x(0) = 1.0,
v(0) = 0.0. A time step of ∆t = 0.05 is used. It is
found that the next maximum occurs at t ≈ 3.15
with amplitude ≈ 0.73. All the input parameters
can be easily varied. Students should play with
the spreadsheet to get a sense of how the solution
depends on the system parameters.

1.3 Guessing a solution

This Section takes a physical and heuristic ap-
proach, and guesses the general solution to (2). By
the general theorems on ODEs and indeed as shown
by the numerical method (see above), there is one
and only one solution if two initial conditions are
given. If the conjectured solution (a) is checked
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to satisfy (2) and (b) contains two free parame-
ters,1 then it must be the correct general solution.
With this in mind, we proceed to make a conjec-
ture, based on physical intuition.

Recall that without damping, i.e., if α = 0, then
the general solution is

x(t) = A cos(ω0t+ φ0) (4)

The two arbitrary constants A and φ0 (or equiva-
lently two linear free parameters B and C related
to A cosφ0 and A sinφ0) are determined by the
initial conditions.

Now we conjecture that there are two changes.

• The amplitude A, instead of being constant,
now decreases with time in some fashion

A 7→ A(t)

where A(t) decreases to zero at a rate deter-
mined by α.

• The damping force would cause the periodic
motion to be slower or the period to be longer.
So we guess that in the argument of the cosine

ω0t 7→ Ωt

where Ω is smaller than ω0 by an amount de-
termined by α.

Exponential decay
For any linear system, the only possible decay is an
exponential one. Let us first phrase the argument
physically.

Imagine A(t) dropping (a) from 1 to 1/2, and
(b) from 1/2 to 1/4. The latter is just the former
multiplied by an overall factor of 1/2 — for a linear
system, a multiple of a solution is also a solution.
So the time taken for the two processes are identi-
cal; let us call it the half-life T .2 Thus

• In a time t = T , A(t) decreases by 1/2.

• In a time t = 2T , A(t) decreases by (1/2)2.

• In a time t = nT , A(t) decreases by (1/2)n =
(1/2)t/T .

1To be a bit more careful, we need to check that the two
parameters can be converted to two linear parameters.

2Not to be confused with the period. The half-life will
not be mentioned after we introduce τ below.

So the functional form must be

A(t) = A

(
1

2

)t/T
(5)

where the prefactor A is the initial value. This idea
of decaying by geometric ratios and the concept of
half-life should be familiar from radioactive decay.
Our emphasis is that it simply follows from linear-
ity, or the fact that the overall scale cannot matter.

The formula (5) is conventionally written in a
different but equivalent way. Start with

2 = ea

1/2 = e−a

(1/2)t/T =
(
e−a
)t/T

= e−at/T

Thus

A(t) = Ae−at/T (6)

Note that a = ln 2 = 0.693. Introduce another
time scale τ and its inverse γ by

τ =
T

a
= 1.44T

γ =
1

τ

then (6) can be re-written as

A(t) = Ae−γt = Ae−t/τ (7)

Over one characteristic time τ the amplitude de-
cays by a factor of e; γ is the decay rate. The
expression (7) is more convenient when we want to
differentiate.

A more formal derivation is to note that A(t)
must decrease by a definite fraction per unit time
— linearity means absolute scale does not matter,
so only the fraction can enter. Thus

dA(t)

dt
= − γ A(t)

from which (7) follows trivially.

Form of solution
Thus the conjectured solution is of the form

x(t) = Ae−γt cos(Ωt+ φ0) (8)

There are four parameters.
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• The parameters γ and Ω are determined by the
ODE.

• The parameters A and φ0 are determined by
initial conditions.

The behavior of the conjectured solution is shown
in Figure 1, for the case where γ is small, i.e., the
amplitude decreases only slightly in each period.
The dotted lines are the envelope

xe(t) = ±Ae−γt (9)

and the solid line is (8). It touches the upper
(lower) dotted line when the cosine reaches +1
(−1).

By the way, the time tn when the cosine is + 1
and the time t′n when the displacement is maximum
are not exactly the same; see Figure 2.

Problem 1
For simplicity let φ0 = 0. Let T = 2π/Ω.
(a) Show that the cosine has the value +1 whenever
t = tn = nT .
(b) Show that the displacement x(t) attains its local
maxima whenever t = t′n = nT −∆t, where ∆t is a
constant (independent of n). Also determine ∆t. §

Period
At least for weak damping, one still talks about the
period T (as above), which is the interval between
successive local maxima, even though the motion is
not strictly periodic.

1.4 Checking the solution

Next check the solution and determine γ and Ω.
We can reduce the apparent complexity and gain
clarity by a couple of tricks.

• The overall amplitude A does not matter; it
will appear in every term in the ODE (2) and
can be cancelled. So we may as well save some
writing and set A = 1 in the derivation.

• No matter how many times we differentiate,
there will be only two types of terms

e−γt cos(Ωt+ φ0) = e−γt C

e−γt sin(Ωt+ φ0) = e−γt S

• In fact the displacement, velocity and acceler-
ation must take the form

x(t) = e−γt (p0C + q0S)

ẋ(t) = e−γt (p1C + q1S)

ẍ(t) = e−γt (p2C + q2S)

where for the assumed solution (8)

p0 = 1 , q0 = 0 (10)

• When these are put into (2), the conditions
will be (

p2 + αp1 + ω2
0p0

)
e−γt C

+
(
q2 + αq1 + ω2

0q0

)
e−γt S = 0

Since this must hold as an identity in t, the
two terms must separately vanish, and we get
two conditions on the coefficients:

p2 + αp1 + ω2
0p0 = 0

q2 + αq1 + ω2
0q0 = 0 (11)

The above sets out the schema for the derivation,
and the actual evaluation is left as an exercise.

Problem 2
Starting with (10), calculate p1, q1 and p2, q2.
Hence write out (11) explicitly, and show that the
solution is

γ = α/2

Ω =
√
ω2

0 − γ2 (12)

Note that these make sense: (a) the rate of expo-
nential decrease, γ, is proportional to the amount
of damping α; and (b) the frequency of motion Ω
is reduced from ω0 by an amount related to the
damping. §

Problem 3
Consider a system with α = 2, ω0 = 3, and initial
conditions x(0) = 1, v(0) = 0. Find the position x
at time t = 0.5
(a) by making use of the analytic solution, and
(b) numerically using a spreadsheet, and changing
the time step until the result is reasonably accurate.
§
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2 Complex method

Motivation
The complex method is now introduced. There are
at least two motivations.

• The calculation will be actually simpler. In-
stead of keeping track of two types of terms,
there will be only one type.

• From (12) one would naturally ask what hap-
pens when γ > ω0 — would not the square
root become imaginary?

The main elements of the method have already
been outlined in the module on solving ODEs, but
a self-contained derivation is nevertheless presented
below.

Complex solution
Start by looking for a complex solution x̃(t) satis-
fying (

d2

dt2
+ α

d

dt
+ ω2

0

)
x̃(t) = 0 (13)

We conjecture a solution

x̃(t) = Ã eiωt (14)

where Ã is a complex constant. The form of (14)
ensures that

d

dt
7→ iω

so (13) becomes an algebraic equation

(iω)2 + α(iω) + ω2
0 = 0 (15)

This is a quadratic equation for ω, for which the
solution is

ω = iγ ± Ω (16)

where γ and Ω are given in (12). For the moment
suppose the damping is small and Ω is real.

Problem 4
Check the solution (16) by solving the quadratic in
(15). §

Take the real part
Henceforth take the + sign. (See Problem 5 below.)
Then

eiωt = e−γt eiΩt

Also represent the complex amplitude as

Ã = Aeiφ0

Then

x̃(t) = Ae−γt ei(Ωt+φ0) (17)

Now if we write

x̃(t) = x(t) + iy(t)

then the real part x(t) by itself is a solution to
the ODE (as is the imaginary part y(t) by itself).
Applying this idea to (17), we find

x(t) = Ae−γt cos(Ωt+ φ0)

recovering the solution as before.

Problem 5
Take the minus sign in (16) and show that there is
no new solution. §

3 Different cases of damping

From the last Section we found that

x(t) = < x̃(t)

x̃(t) = Ã eiωt

ω = iα/2±
√
ω2

0 − α2/4 (18)

and the analysis in the last Section implicitly as-
sumed that the discriminant

∆ = ω2
0 − α2/4

is positive, as would be the case if the damping
coefficient α is small. Evidently this is only one of
three possible cases, which we now analyze more
systematically.

3.1 Under-damped

If ∆ > 0, then Ω as defined is real, then

x̃(t) = Aeiφ0 · e−γt eiΩt

= Ae−γt · ei(Ωt+φ0)

x(t) = Ae−γt · cos(Ωt+ φ0) (19)

as discussed. This is an oscillatory solution, since
the cosine alternates in sign an infinite number of
times (Figure 1). This case is the most intuitively
obvious, since it is “closest” to the undamped case
with α = 0.
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3.2 Over-damped

If ∆ < 0, then both roots for ω in (18) are imagi-
nary, and we denote them as −iγ1,2, where

γ1 =
α

2
+

1

2

√
α2 − 4ω2

0

γ2 =
α

2
− 1

2

√
α2 − 4ω2

0 (20)

It is easy to see that

γ1 > γ2 > 0

(The label of 1, 2 is only a matter of convention.)
The general solution, with two arbitrary con-

stants, is given by

x(t) = A1 e
−γ1t +A2 e

−γ2t (21)

For t > 0, this may either have only one sign (i.e.,
never crossing zero) or it may cross zero once.

Problem 6
Under what conditions on the parameters γj and
Aj would there be a zero-crossing for t > 0? §

Problem 7
Consider a system with α = 4, ω0 = 1, and initial
condition x(0) = 1, v(0) = 0. Find the position
x(t) when t = 0.3. Also check against the numerical
solution using a suitably small time step. §

3.3 Critically damped

Number of solutions
Next consider the case in between: what happens
if ∆ = 0? The quadratic equation (15) has only
one root, but we know that (e.g., from the need
to match initial conditions) that there must be two
independent solutions. So what is wrong?

Only one thing is wrong: the assumption that
there are two solutions of an exponent form, e.g.,
eiωt, for some complex ω. There is no general the-
orem that says this must be the case. There must
be another solution that is not of this form.

To get at the other solution let us write the basic
ODE in this case as(

d

dt
+ γ

)2

x(t) = 0 (22)

This representation follows the same idea as the
characteristic polynomial having two identical fac-
tors.

Guessing the other solution
We can simply guess and check the solutions.

Problem 8
Check that the following are two solutions:

x(t) = e−γt

x(t) = t e−γt (23)

by direct substitution into (22). §

Problem 9
Find the independent solutions to(

d

dt
+ γ

)3

x(t) = 0

and see whether you can conjecture and even prove
a more general statement. §

The general problem of multiple merged roots in
the characteristic polynomial of a dissipative sys-
tem is of some interest, even recently.3

General solution
The general solution is therefore

x(t) = (A+Bt) e−γt

By taking a limit*
*This part is more advanced and can be skipped.

A systematic way to understand the second solu-
tion is to approaching the critical case as a limit
— which will establish the link between the three
cases, despite the apparent “discontinuity” in the
analytic form. So consider the problem(

d

dt
+ γ

)(
d

dt
+ γ + ε

)
x(t) = 0 (24)

subject to the initial condition x(0) = 1, ẋ(0) =
0, in the limit ε → 0. (In general, other initial
conditions will also reveal the same conclusion.)

For ε 6= 0, this is not the critical case, and the
general solution is

x(t) = Ae−γt +B e−(γ+ε)t (25)

3See e.g., A van den Brink and K Young, “Jordan
blocks and generalized bi-orthogonal bases: realizations in
open wave systems”, Journal of Physics A: Mathemati-
cal and General, 34, 2607 (2001). DOI: 10.1088/0305-
4470/34/12/308. You may be surprised that even in the
21st century there was something slightly novel to discover
in such classical problems.
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Problem 10
Apply the initial conditions and show

A = 1 +
γ

ε
, B = − γ

ε
(26)

Then write out (25) in the limit ε → 0. Hint: Ex-
pand e−εt in powers of ε. §

This approach makes it clear why a power of t
appears: It comes from εt in the expansion of e−εt.
The factor of ε cancels 1/ε in the coefficients in (26).
Higher powers would give ε−1 ·(εt)n with n ≥ 2, and
therefore vanish when ε→ 0.

4 Energy

General remarks
In the presence of a damping force, the total energy
would gradually be lost. This Section records how
the total energy decreases with time. For simplicity
only the under-damped case, in particular the case
with γ � Ω, will be shown explicitly. Again, to
avoid distraction by the mathematics, we state the
result first (Figure 3):

• The total energy E decreases as exp(−2γt), i.e.,
like the square of the amplitude.

• But superimposed on this smooth decrease are
small-amplitude oscillations (also decreasing
with the same exponent) that vary at the sec-
ond harmonic 2Ω. These oscillations have ap-
proximately zero average.

Displacement and velocity
For the under-damped case, the displacement is
taken to be

x = Ae−γt cos Ωt

An arbitrary initial phase φ0 can be added to the
argument of the cosine without affecting the anal-
ysis below. The velcoity is therefore

v = Ae−γt (− γ cos Ωt− Ω sin Ωt)

in which the first term comes from differentiating
the exponential and the second come from differen-
tiating the cosine.

Potential energy

U(t) =
1

2
kx(t)2

=
1

2
kA2 e−2γt cos2 Ωt

=
1

4
kA2 e−2γt (1 + cos 2Ωt) (27)

Kinetic energy

K(t) =
1

2
mv(t)2

=
1

2
mA2 e−2γt

(
γ2 cos2 Ωt+ Ω2 sin2 Ωt

+ 2γΩ cos Ωt sin Ωt
)

=
1

4
mA2e−2γt

[
γ2(1 + cos 2Ωt)

+ Ω2(1− cos 2Ωt) + 2γΩ sin 2Ωt
]

(28)

Total energy
Consider the total energy E = U +K and its non-
oscillating part Ē obtained by dropping the terms
that oscillate at the second harmonic. Then

Ē =
1

4

[
k +m(γ2 + Ω2)

]
A2 e−2γt

=
1

2
kA2 e−2γt (29)

since γ2 + Ω2 = ω2
0 and mω2

0 = k.

Problem 11
The remaining terms are of course oscillatory. But
in addition, show that their amplitudes go as γ or
γ2. Thus, for weak damping, these are also small.
Hint: Eliminate Ω from the prefactors and express
in terms of ω0 and γ. §
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