Rolling

December 2, 2015

Rolling is studied, as an example of motions that
combine translation with rotation. Friction and the
condition of no slipping are important concepts.
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1 Introduction

1.1 Translation and rotation

The configuration of a rigid body can be described
in two steps.

e Choose a point C on the body and specify its
displacement 7" from the origin O. Here we
take 7" to be in the z—y plane: 7= xi+ yj.

e Then a number of angles are used to specify
the orientation of the body about C, relative
to a fixed set of axes. Here we assume the
orientation involves only one angle of rotation
¢ about the z-axis.

The situation is illustrated in Figure 1.1

The motion is then given by how 7(¢) and ¢(t)
change with time. The former describes the mo-
tion of a hypothetical point particle, and is called
translation; the latter is a rotation. This module
studies the combination of these two components
of motion in simple cases.

For describing the configuration and its change
(i.e., kinematics), C' can be any point on the body.
But for analyzing forces and torques (i.e., dynam-
ics), it is often best to choose C to be the CM —
as we shall see below.

1.2 Examples

It is useful to start with some examples to illustrate
the issues that may arise.

Car
Consider a car moving on a horizontal road. The
center C' of each tyre undergoes linear motion, and
the tyre rotates about C, the axle of the wheel
(Figure 2).

Suppose the car accelerates. The only horizon-
tal force acting on the system is friction due to the
road. Thus we find that friction is involved. The

1Thus in this restricted scenario, the kinematics will be
described by three variables: two Cartesian coordinates and
one angle. The most general case for a rigid body is de-
scribed by six variables: three Cartesian coordinates and
three angles.



frictional force is in the forward direction, by New-
ton’s second law. You may find this perplexing; we
shall explain later.

“Normally” the linear motion of the car and the
rotation of the wheel are related: every time the
wheel rotates once, by an angle 27, the car moves
forward by 2w R, where R is the radius of the wheel.
But if the driver steps too hard on the brake, the
rotational motion of the wheel comes (almost) to a
stop, but the car continues to move forward — the
car skids; or we say the tyres slip. In this case,
the rotation of the wheel and the linear motion
no longer have a definite relationship. This exam-
ple shows that we must distinguish between rolling
without slipping (the “normal” case) and rolling
with slipping.

Cylinder rolling down incline

A cylinder rolls down an incline making an an-
gle with the horizontal, without slipping (Figure
3). Both the linear speed and the angular veloc-
ity (defined as positive in the directions shown) in-
crease with time. To cause such an angular acceler-
ation, the frictional force f must be in the direction
shown, in order to provide a torque of the correct
sign.

In contrast with the previous example, the fric-
tion is opposite to the direction of motion, even
though the linear motion is accelerating. Again,
you just have to believe the equation of motion:
torque is in the same direction as angular acceler-
ation.

1.3 Factors to consider

Thus we have to first deal with two concepts: fric-
tion and the condition of no slipping.

2 Friction

2.1 Phenomenological law

Friction between two solid surfaces in contact is
very complicated at a microscopic level, and we
do not expect a law of friction that is exact and
grounded in fundamental principles; all we can ex-
pect is a phenomenological law, based on observa-
tions. However, the equations of motion (such as
Newton’s second law and its rotational analog) are
exact, and are indeed used to infer properties of

friction — as we did in the examples in the last
Section.

2.2 Limiting friction

At rest

Consider a block resting on a table (Figure 4). A
horizontal force F is applied to it. The following is
observed.

e If I = 0.1 N, the block does not move. Thus
the friction must be f = 0.1 N, in the opposite
direction.

o If F = 0.2 N, the block still does not move.
Thus the friction must be f = 0.2 N, in the
opposite direction.

o Likewise for ' = 0.3 N.

e When F' = 0.4 N, the blocks just starts to
move. We conclude the mazimum value of the
frictional force in this experimental situation
is 0.4 N. .

This simple thought experiment tells us two
properties: (a) For the case of the contact being
at rest, the law of friction does not tell us the value
of f; rather it is to be determined from Newton’s
second law, in terms of the other forces. (b) The
only thing we know from the law of friction is the
limiting friction, denoted as L: |f| < L.

In motion

Once there is relative motion between the two sur-
faces, the frictional force remains at the value L,
independent of velocity. (Actually, it drops slightly
below L, but we shall ignore this difference here.)

Force versus velocity

Thus the plot of frictional force f versus the veloc-
ity v is shown in Figure 5a. Friction f is negative
(positive) if v is positive (negative).

The vertical part of the graph is the case of con-
tact at rest — the law of friction as stated above
does not tell us what the friction is, only its allowed
range. The horizontal parts of the graph refer to
the case of contact in motion.

In contrast, the viscosity due to a fluid (e.g., a
ball moving through air) is much better represented
by a different model: the magnitude of the force is
proportional to velocity: f = — bv (Figure 5b).



Which velocity?

For a block sliding on a table (Figure 4), there is
only one velocity. For a wheel rolling on a road,
different parts of the wheel have different velocities
(Figure 6): in the normal case the top (bottom) of
the wheel has a higher (lower) velocity compared to
the center. It is obvious that only the velocity of the
contact point matters, and the distinction between
“at rest” and “in motion” refers to this velocity.
We come back to this in the next Section.

2.3 Coeflicient of friction

The limiting friction is not an absolute number; it
depends on how hard the two surfaces are pressed
together — described by the force of normal reac-
tion due to the surface, denoted by N. Usually,
this is just the weight of the object on top, but is
(a) increased if there is some other force pressing
on it, and (b) reduced by a factor of cos @ if the ob-
ject is placed on an incline of angle 6, so that only
a component of gravity acts normal to the surface.
It is not surprising that the limiting friction L in-
creases with normal reaction N, and it is found
phenomenologically that they are proportional:

uN (1)

where p is called the coefficient of friction.

Table 1 gives illustrative values of the (static) co-
efficient of friction. The values depend on whether
the surfaces are well polished, and can be substan-
tially reduced if the two surfaces are separated by
a thin layer of liquid, especially oil.

L =

I
aluminum | aluminum 1to 15
brick wood 0.6
tyre asphalt 0.72

diamond diamond 0.1
oak oak 0.6
wood wood 0.25 to 0.5

Table 1. Static coefficients of friction. Adapted
from

http://www.engineeringtoolbox.com/
friction-coefficients-d_778.html.

from which more examples can be found.

e We write L = uN and not (as in some text-
books) f = uN, to emphasize that in many
cases f can be smaller.

e As mentioned earlier, the frictional force is mo-
tion can be a bit smaller. To distinguish be-
tween the two cases, we can use a larger static
coefficient ug for the limiting static value L,
and a smaller kinetic coefficient py for the case
of motion. For simplicity, this difference is ig-
nored.

2.4 Examples

A number of examples are presented as Prob-
lems. All these involve friction without elements of
rolling, so that students can gain familiarity with
the concepts in a simpler context.

Problem 1

A block of wood of mass 1 kg rests on a table.

(a) A horizontal force of 0.1 N is exerted on the
block, and the block does not move. What is the
frictional force?

(b) The horizontal force is increased to 0.2 N. The
block still does not move. What is the frictional
force now?

(c) What can you say about the coefficient of fric-
tion? §

Problem 2

A block of wood rests on an incline making an angle
0 with the horizontal. The coefficient of friction is
73

(a) If 6 is gradually increased from zero, at what
critical angle . would the block start to slide?

(b) If > 6., what is the linear acceleration down
the incline? Express as a fraction of g. §

Problem 3

The coefficient of friction between the tyres of a car
and the road is p.

(a) What is the maximum possible linear accelera-
tion of the car on a level road, even with the most
powerful engine?

(b) If u = 0.72 (for “standard” tyres on asphalt),
what is the corresponding time needed to acceler-
ate from 0 to 60 mph (1 mile = 1.6 km)?

(¢c) Would this limit apply to cars equipped with
rockets? Why (not)? §

Problem 4

A car is travelling very fast and the driver sud-
denly sees an obstacle ahead. He steps hard on
the brakes, and immediately stops the rotation of
the wheels; the tyres then skid on the road surface,



leaving a skid mark of 40 m before the car comes
to a stop. If the coefficient of friction is yu = 0.72,
find the velocity of the car when the brakes were
applied. To a good approximation, this is how car
speeds are determined at accident sites. §

Problem 5

A uniform ladder rests with its lower end on the
ground (coefficient of friction p) and its upper end
against a smooth wall. The ladder makes an angle
0 with the vertical. What is the maximum value of
0 for the ladder not to slip? §

3 No-slip condition

In this Section we consider the “normal” case of
rolling, in which a circular or spherical object (a
wheel, a ball) rolls without slipping. Three aspects
will be considered: kinematics, force and energy.

3.1 Kinematics

Simple argument

Consider a wheel of radius R, rolling on a road
without slipping. Imagine wet paint is put on the
rim. Then for every turn of the wheel, i.e., an an-
gular displacement of 27, a line of paint of length
2m R will be deposited on the road. In other words,
the ratio between linear displacement and angular
displacement is R. Dividing by time, the ratio be-
tween linear velocity v (of the center of the wheel)
and angular velocity w is also R

This is the no-slip condition.

(2)

Using relative velocity
A more systematic derivation goes as follows. Fig-
ure 7 shows a wheel whose center C' is moving for-
ward with velocity ¥ = v i, and rotating at angular
velocity w. For any point on the rim, the velocity
i relative to C is Rw (see the module on Rotation:
Part 1), but is directed in various directions. The
velocity of each point relative to the ground is then
U+ 4.

But for the bottom point B, # is in a direction
opposite to ¥. So the instantaneous velocity of the
bottom point, denoted as vg, is given by

3)

vg = v—Rw

This relationship is true whether or not there is
slipping.

The special case of no slipping means vg = 0,
which then recovers the condition (2).

3.2 Force

Since the point of contact is at rest, the frictional
force f is unknown, except that it cannot be larger
than the limiting value: — L < f < L. It can
have any value in that range, determined by other
conditions (e.g., Newton’s second law).

Example 1

A car has a mass 1000 kg. What is the frictional
force due to the ground acting on the tyres when
the car is (a) at rest, (b) accelerating at 1 m s=2,
and (c) decelerating at 1 m s~2, assuming no slip
in the last two cases?

By applying Newton’s second law, the answers
are obviously (a) 0 N, (b) + 103 N, (¢) — 103 N.
This trivial problem illustrates that, in such cases,
the value of f is obtained from Newton’s second
law, not from the law of friction. §

Beginning students often ask: How can friction
be in the forward direction? Should it not always
tend to oppose motion? The answer is simple: The
road does not “know” about the motion of the car,
or of the center of the wheel; it only “knows” about
the motion of the point of contact — which is mo-
mentarily at rest in all three cases. You can imagine
that when the car accelerates, the bottom point is
“trying” to move backwards, just as when you run,
your shoes are pushing the ground backwards —
and friction opposes that backward motion.

3.3 Energy

Go back to Example 1. What is the rate of work
done by friction in cases (b) and (c)? The force f is
not zero, but the velocity of the point of contact is
vp = 0. So the rate of work done is P = fup = 0.
Therefore: in rolling motion without slipping, the
frictional force does no work.

In this model, an object that is perfectly circu-
lar or spherical would roll forever on a horizontal
surface, even if the surface is slightly rough (i.e.,
1 # 0). That is a good approximation: after all, a
ball rolls much farther than a block can slide. But



this cannot be strictly true: balls eventually come
to a stop. Where did we go wrong?

Take the example of car tyres. Because the tyre
pressure is finite, the contact cannot be a single
point. A better model of a tyre is shown in Figure
8, where the angle 6 is very small, but non-zero.
Obviously the velocity is not strictly zero every-
where on the contact surface; therefore it is not
exactly true that no work is done. This explana-
tion is provided just to resolve the paradox. In all
problems we encounter in this module, this effect
is ignored.

4 Rolling down an incline

4.1 Description of problem

We now deal with one single example in some de-
tail. The situation we consider is shown in Figure
9a. A cylinder or sphere of mass M, radius R and
moment of inertia I = BMR? is placed on an in-
cline making an angle 6§ with the horizontal. It is
released from a height h, and rolls down the incline
without slipping. What is the velocity v of the cen-
ter of the cylinder or sphere when it reaches the
bottom?

The following refers to a cylinder, but by allowing
for a parameter 3, other cases are included in the
same analysis: a solid cylinder (8 = 1/2), a thin
cylindrical shell (8 = 1), a solid sphere (5 = 2/5)
or a thin spherical shell (8 = 2/3).

It is also convenient to express the answer v in
terms of a reference velocity vy — the velocity of
a hypothetical particle that slides down the same
incline without friction. Obviously

2gh (4)

2
vy =
while

v o= (5)
where ~ is a constant, which being dimensionless,
can only depend on [ and possibly 0. Actually
it will turn out not to depend on #. Incidentally,
this shows that by giving some thought to units
and dimensions, we already know a lot about the
answer without invoking any laws of dynamics.

YVo

4.2 Method 1: energy

The easiest method is to use the conservation of
energy. Initially, when the cylinder is at the top of
the incline, it has zero KE, and PE given by

U = Mgh (6)
At the bottom, there are two contributions to
the KE: due to the motion of the CM and due to
rotation about the CM. In obvious notation:
1 1
K = §Mv2 + §Iw2 (7)
The formal proof that the KE can be broken up
this way was given in an earlier module.
If there is no slip, w can be expressed in terms of
v by (2). Thus both terms in (7) go as v?, and

K = 8)

1

5 (1 + ,B)j\4’l}2
Since friction does no work when there is no slip-

ping, energy is conserved. Equating (6) and (8)

then gives

2
2 _ Y%

1+8

(9)

From this energy perspective, it is easy to see that
the angle 6 does not matter.

Problem 6

The following four objects are allowed to roll down
such an incline in a “race”: a solid cylinder, a hol-
low cylinder, a solid sphere, a thin spherical shell.
In what order would they arrive at the bottom? §

4.3 Method 2: forces and torques

The forces acting on the cylinder are shown in Fig-
ure 9b. The component of gravity Mgsin6 acts
along the incline; we do not need to deal with the
component perpendicular to the incline. A fric-
tional force f acts at the point of contact.

Students often ask: The force f is drawn as
pointing up the slope; how do we know that is the
direction? We can give three answers.

e The cylinder will roll faster and faster in the di-
rection shown, and that requires a torque due
to friction that is pointing up the slope. This
is just putting (11) below in words.



e From Method 1, we know that the CM will
move slower than a hypothetical point particle
not subject to friction, and that means friction
must act against gravity. This is just putting
(10) in words.

e But the best answer (indeed the real answer) is
the following — and this is a general point that
is useful in many contexts. By drawing Fig-
ure 9b this way, we are not making a factual
claim that f point up the slope; we are only
declaring a choice of convention: if f points up
the slope, its value will be denoted as positive;
if f points down the slope, its value will be de-
noted as negative. Which is actually the case
will emerge only at the end, when we find the
value of f. It would not matter if we choose
“wrongly”; we would only get some negative
numbers in the final answer.

Now we can write down the relevant equations.
For the linear acceleration a of the CM down the
slope,

Mgsind — f = Ma (10)
For the angular acceleration « of the rotational mo-

tion about the CM, we have

T = la
fR = I(BMR?a (11)
f = BM(Ra) (12)

Finally, based on the no-slip condition, we have
Rw = v, and differentiating this with respect to
time gives Ra = a. Putting this into (12) gives

f = BMa (13)

When this is put into (10) and this term is moved
to the RHS, we get

Mgsind = (1+p)Ma

1
= ——gsind (14)

148

The velocity after travelling a distance s = h/sin 6
along the incline is given by

2

v° = 2as
1 h
= 92._—"  gsinf-
1+Bgsm sin 6
1 V2
= — . 2gh=-2 15
115 T 145 (18)

giving the same answer as before. Note that sinf
cancels.

We also need to emphasize one point. The torque
equation (11) is written about the CM, which is ac-
celerating. Non-inertial frames are acceptable pro-
vided we add a pseudo-force —ma, where a is the
acceleration of the frame. This is like an additional
uniform gravitational force — which importantly
acts through the CM. It therefore contributes zero
extra torque. This would not be true if the rotation
is not considered about the CM.

4.4 Method 3: torque about point of
contact

Since the point of contact B at the bottom of the
cylinder is momentarily at rest, we can regard the
whole motion as a rotation about B, without any
other translation (Figure 9c¢). To be more specific,
take two arbitrary points P, () on the cylinder. We
notice that (a) the lengths of the lines BP, BQ are
not changing, (b) the angle PB(Q is not changing,
and hence (c) the lines BP and B@ must be rotat-
ing at the same angular velocity. This is the reason
why the motion can be regarded (instantaneously)
as a rotation about B.

Also, the point B is instantaneously at rest, so
we can consider rotations about this as a fixed axis.
Thus

(16)

The torque 7’ is caused by the force component
Mgsin 6 acting at a moment arm R from the axis
B, thus

7' = Mgsinf-R (17)

On the other hand, the moment of inertia about B
can be calculated by the parallel axis theorem as

I' = I+MR*=(B+1)MR*  (18)
Putting (17) and (18) into (16) then yields
o - 1 . gsin@
1+8 R
a = Ra:mgsinﬁ (19)
and the rest of the calculation proceeds as in

Method 2.



4.5 Other examples

Problem 7

A pulley is in the shape of a uniform solid cylin-
drical disk of mass M and radius R. A light string
is wound around it, and a mass m is hung at the
end of the string (Figure 10). Find the linear ac-
celeration a of the mass m, (a) by considering the
changes in the PE and the KE after m descends
by an amount h, and (b) by considering forces and
torques. This problem also involves a combination
of translation and rotation, though of different bod-
ies. §

Problem 8

Two wheels of radius R and total mass M, total
moment of inertia I = BMR? are connected by
an axle of radius R; and negligible mass (Figure
11a).

(a) A string is wound around the axle and is pulled
by a force F'; there is of course also a frictional
force f (Figure 11b). The wheels accelerate with-
out slipping.) Find the acceleration a.

(b) What if there are two such strings and equal
forces F' pull in opposite directions, but with
torques in the same sense (Figure 11c)? Pay at-
tention to the signs of f in the two cases.

(¢) Where does the increased KE come from? §

5 Examples with slipping

This Section introduces the ideas through just one
example.

A bowling ball is set into motion with initial ve-
locity vo and initial angular velocity wo (Figure
12a). It rolls with slipping on the bowling alley,
where the coefficient of friction p is large enough
that the ball ends up rolling without further slip-
ping, after a time ¢, and with a final velocity v,.
We want to find the time ¢, and the velocity v,.

During the part of the motion before slipping
stops, there is a frictional force f acting on the
ball (Figure 12b). The equations of linear and
rotational motion are as follows.

f

t = —_ — P S,
v(t) vg — at = vy Mt
T
w(t) = wo—ﬁ—at:wo—l—jt
R
= wp+ f t (20)

BMR2

Note that f (if it is positive, i.e., in the direction
shown) causes the linear motion to slow down but
the rotational motion to speed up. It will be con-
venient to introduce u(t) = Rw(t) (the velocity of
the rim of the ball relative to its center) and also
ug = u(0) = Rwo.

At the time t,, the no-slip condition applies:
v(ty) = Rw(t.), or explicitly

Vo — M te = uo+ Miﬁ Ty
wow = Larshe e
M
from which we get
_ B M
te, = 1 —|—ﬁ f (’Uo Uo)
_ B vo —uo (22)
1+8 ng

where in the last step we have used f = uMg. The
first factor is 2/7 for a solid sphere (8 = 2/5).
The velocity at that time is then

f

v = U(te) = vg — Mt*

— Vo — 1+B('I}0—UO)
1‘?1(1)1?'1&0 (23)

e Slipping is due to the mismatch between v(t)
and wu(t). Therefore the time taken for slipping
to end is t, o (vo — ).

e The final velocity v, is a weighted average of
vo and ug.

Problem 9

A billiard ball of mass M and radius R, initially at
rest, is struck horizontally by a cue stick at a height
h = ~vR above the billiard table. A large force F is
exerted over a very short interval At.

(a) What must be the value of v if the ball is to start
rolling without slipping? Call this value 7y and ex-
press it in terms of the parameter 3 in I = 3M R?,
and also evaluate it for the specific value 8 = 2/5
for a solid sphere.

(b) If v # 50, find the ratio v/vg, where vq is the
initial linear velocity of the ball, and v the even-
tual velocity after it has come to a state of rolling
without slipping. §
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