
Energy: higher dimensions

October 2, 2015

The concepts of potential energy and conservation
of energy are formulated in n dimensions. The
evaluation of the force from the potential energy
leads to the gradient operator.
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1 Potential energy

1.1 Definition

This module restricts attention to forces that are
conservative. If in doubt, check that (see last mod-
ule)

(curl ~F )ij = 0 (1)

Thus, the work done by the force in going from a
reference point O (taken to be fixed and often not

indicated explicitly) to a point ~r depends only on ~r
and not on the path γ(O,~r) linking the two points:

W (γ(O,~r)) = W (~r)∫
γ(O,~r)

~F · d~r =

∫ ~r

O

~F · d~r (2)

Thus we are able to define the PE as a function
of the final position ~r:

U(~r) = −
∫ ~r

O

~F · d~r (3)

Refer to the 1D case for the minus sign: U increases
in the direction opposite to that of ~F . In the case of
gravity, U increases upwards, so it can be thought
of heuristically as a “height”.

1.2 Examples

Example 1
Suppose the force is an anisotropic harmonic oscil-
lator

~F = − (k1x i + k2y j + k3z k) (4)

First check that it is conservative, e.g.,

(curl ~F )xy =
∂Fy
∂x
− ∂Fx

∂y

=
∂(k2y)

∂x
− ∂(k1x)

∂y
= 0 (5)

Thus we can calculate the PE as follows, using
the origin as the reference

U(x, y, z) = −
∫ (x,y,z)

0

~F · d~r

=

∫ (x,y,z)

0

(k1x dx+ k2y dy + k3z dz)

=
1

2

(
k1x

2 + k2y
2 + k3z

2
)

(6)
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Be careful with the evaluation. If we had encoun-
tered a term such as

∫
y dx, we would have to ask:

“Which path?”, because the path determines how
y depends on x. This does not happen here — a
matter of luck in a special case. §

Example 2
Find U(~r) corresponding to the central force

~F (~r) =
k

r2
er (7)

where er = ~r/r is the unit radial vector. This de-
scribes a repulsive inverse-square force if k > 0 (as
between two like charges) or an attractive inverse-
square force if k < 0 (as between two unlike
charges, or gravity between two masses).

Let ~r be described by polar coordinates (r, θ, φ).
Choose the reference point at infinity. Choose the
path along a radius so that θ and φ are constant
on the path and

d~r = dr er (8)

You may say: The path goes from infinity to r;
shouldn’t there be a minus sign in (8)? No. The
sign will take care of itself, because dr is negative
once the limits of integration are specified (lower
limit > upper limit). Thus

U(~r) = −
∫ ~r

∞
~F · d~r

= −
∫ ~r

∞
~F · er dr = −

∫ r

∞

k

r2
dr

=
k

r

∣∣∣∣r
∞

=
k

r
(9)

In the second line we have evaluated ~F ·er and this
is the only component that matters since the path
is chosen to be radial. §

2 Force from PE

2.1 Force components in terms of
partial derivatives

The last Section has given U(~r) as an integral of ~F
(see (3)). This Section asks the reverse question:

How do we find ~F if U(~r) is given? The formal-
ism here is just the fundamental theorem of vector
calculus placed in a particular physical context.

Recall the corresponding derivation in the case of
1D: we compare the PE at two neighbouring points
x and x+∆x. But now we can choose a pair of
neighbouring points three ways, being separated in
either the x, y or z direction.

Figure 1 illustrates, on the x–y plane (i.e., z
suppressed), how a point A = (x, y, z) can be com-
pared to B = (x+∆x, y, z) or to C = (x, y+∆y, z).
Taking the first case

U(x+∆x, y, z)− U(x, y, z)

= U(B)− U(A)

= −

(∫ B

O

~F · d~r −
∫ A

O

~F · d~r

)

= −
∫ B

A

~F · d~r = − ~F ·∆~r (10)

In the last step the line integral over a short in-
terval is just a simple product, and ~F is evaluated
at any point in the interval, say A. Since for this
comparison, ∆~r = ∆x i, the dot product gives

~F ·∆~r = Fx ∆x (11)

Putting this into (10) and re-arranging terms, we
have

Fx(x, y, z)

= − U(x+∆x, y, z)− U(x, y, z)

∆x

= − ∂U

∂x
(12)

In the last step, upon taking the implied limit of
∆x→ 0, we get a partial derivative because y and
z are held fixed. Generalizing to the other compo-
nents, we have

Fi = − ∂i U (13)

where ∂i = ∂/∂ri and ri is any one of the Cartesian
components of ~r. This is an obvious generalization
of the formula for 1D:

F (x) = − dU(x)

dx
(14)

The same argument can be phrased without us-
ing integrals:

U(B)− U(A)

= − [W (O→B)−W (O→A)]

= −W (A→B) = − ~F ·∆~r (15)
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with the subsequent steps the same as before.

Problem 1
For every example of U(~r) discussed in the last Sec-
tion, do the reverse calculation and find the force.
§

2.2 Gradient operator

Putting the three components together, we have

~F = Fx i + Fy j + Fzk

= −
(
∂U

∂x
i +

∂U

∂y
j +

∂U

∂x
k

)
= −

(
i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z

)
U (16)

In the last line above, we have put the basis vec-
tors in front simply to stress that the differentiation
does not affect them.

We are thus led to define the gradient operator

grad = ~∇ ≡ i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z
(17)

in terms of which

~F = − ~∇U (18)

The symbols grad and ~∇ are used interchangeably.
All these formulas have the obvious generaliza-

tion to n dimensions, with coordinates ri and basis
vectors ei, so that

grad = ~∇ ≡ ei
∂

∂ri
(19)

with summation over repeated indices understood.
Incidentally, the gradient is a vector operator : it

is an operator because it turns one function into
another; it is a vector because it has three (or in
general n) Cartesian components.1

Summary
The relationship between ~F and U can be summa-
rized as

~F
line int−→ − U , U

gradient−→ − ~F (20)

This constitutes an example of the fundamental
theorem of vector calculus: that the gradient is the
inverse of the line integral.

1A more proper characterization is that it has the right
transformation properties to be a vector.

2.3 Curl of gradient is zero

We started with a force field satisfying (curlF )ij =
0, and from that constructed U . The reverse is also
true: If we start with U and construct ~F = − ~∇U ,
then it is guaranteed that (curlF )ij = 0. In words:
the curl of a gradient is zero.

Problem 4
Prove the above statement. Hint: The mixed par-
tial derivatives in different orders are equal. §

3 Equipotential surface

3.1 Definition

The concept of equipotential surfaces is best mo-
tivated by an example. A mass m is placed in a
uniform gravitational field g (say 9.8 m s−2). The
z-axis points upwards and the x–y plane is horizon-
tal. The PE is

U(x, y, z) = mgz (21)

All points on the same plane z = const have the
same value of U ; therefore such a plane is called an
equipotential surface. Figure 2 illustrates a family
of such surfaces labelled by the values of U (y-axis
into the page and suppressed).

This example suggests that we can think of U
as a “height”. Thus, a family of equipotential sur-
faces are analogous to contour lines of the same
height used in showing terrain variation on maps.
Figure 3a shows such a series of contours for a
radial inverse-square repulsive force (centre of map
is a peak) while Figure 3b shows the situation for
a radial inverse-square attractive force (centre is a
well). Figure 4 illustrates the same situation in
a 3-dimensional view; but notice that the three di-
mensions are (x, y, U) and one spatial direction is
not drawn.

3.2 Properties

We derive three properties.

• The force is perpendicular to the equipotential.

• The magnitude of the force is |∆U |/|∆s|,
where ∆s is the perpendicular distance be-
tween two nearby potential surfaces with a dif-
ference in value ∆U .
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• The force points from the surface of higher U
to the surface with lower U .

These rules allow us to understand the pattern of
the force field given a picture of the equipotential
surfaces. The three properties are derived below.

Force is perpendicular to equipotential
Figure 5 shows, schematically, an equipotential
(dotted line). Because we consider only a small
portion of such a surface, the surface can be re-
graded as flat. Let A, B be two neigbouring points
on the surface with separation ∆~r, and let ~F be
the force, for the moment assumed to be at an ar-
bitrary direction. The difference in PE between the
two points is

0 = ∆U = U(B)− U(A)

= ~F ·∆~r (22)

Thus we conclude ~F and ∆~r are perpendicular; and
this holds for any ∆~r lying along the equipotential
surface. Thus, the force is perpendicular to the
equipotential surface.

Force is change of U per perpendicular dis-
tance
Figure 6 shows two nearby equipotential surfaces,
with PE values U and U + ∆U . The point A lies
on one surface, and C on the other, with AC per-
pendicular to the surfaces, and having a length ∆s.
Now

∆U = UC − UA = − ~F ·∆~r (23)

But ~F is along the same direction as ∆~r = AC, so

|~F ·∆~r| = F |∆~r| = F ∆s (24)

thus giving for the magnitude

F =
|∆U |
|∆s|

(25)

The third property is obvious.

4 Conservation of energy

The laws in this Section can be separated into two
levels:

• The relationship between work and kinetic en-
ergy (KE), valid for all forces.

• The conservation of energy relating KE and
PE, applicable only to conservative forces.

In both cases the derivation is a simple generaliza-
tion of the 1D case.

4.1 Work and KE

Here we prove that the work done by the net force
acting on an object is equal to the increase in the
KE.

Constant force
First consider a constant net force ~F . A mass m
moves a distance ∆~r in a time ∆t, with initial ve-
locity ~v1 and final velocity ~v2. Using the average
velocity ~V

∆~r = ~V ∆t =
1

2
(~v2 + ~v1) ∆t (26)

while Newton’s second law gives

~F = m~a = m
~v2 − ~v1

∆t
(27)

Taking the dot product of (26) and (27) eliminates
∆t:

~F ·∆~r =
1

2
m(~v2 + ~v1) · (~v2 − ~v1)

=

(
1

2
mv22

)
−
(

1

2
mv21

)
(28)

Note v2i = ~vi · ~vi. Define kinetic energy (KE) K in
the usual way

K =
1

2
mv2 (29)

and we get

W (1→ 2) = K2 −K1 (30)

The above derivation has used the formulas for
constant acceleration, and is therefore valid (only)
for a constant force.

General force
For a general (non-constant) force, chop the motion
into short segments, in each of which the force can
be regarded as constant. Let us illustrate with two
segments:

W (1→ 3) = W (1→ 2) +W (2→ 3)

= (K2 −K1) + (K3 −K2)

= K3 −K1 (31)
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In the above, the first equal sign relies on the ad-
ditive property of W ; the second equal sign relies
on (30) for a short segment in which the force is
constant. With the last equal sign, all reference
to the intermediate situation cancels, and the RHS
depends only on the initial and final states of mo-
tion. It is obvious how this argument generalizes
to more segments.

The following derivation may look simpler, but
is exactly the same idea expressed in another lan-
guage.

W (i→ f) =

∫ f

i

~F · d~r =

∫ f

i

d

dt
(m~v) · (~v dt)

=

∫ f

i

d

dt

(
1

2
mv2

)
· dt

=
1

2
mv2

∣∣∣∣f
i

= Kf −Ki (32)

In the above, the motion is between an initial time
i and a final time f . We have used the identity

d

dt

(
1

2
mv2

)
=
m

2

d

dt
(~v · ~v)

= m~v · d~v
dt

(33)

In doing the integral, we have cancelled dt in

d

dt
(. . .) dt = (. . .) (34)

which can be regarded as the fundamental theorem
of calculus (integration and differentiation are in-
verse operations); it is also the analog of cancelling
∆t in deriving (28).

4.2 Work and PE

First suppose there is only one force ~F , which is
conservative and associated with potential energy
U . Then

W (i→ f) =

∫ f

i

~F · d~r

=

∫ f

O

~F · d~r −
∫ i

O

~F · d~r = − (Uf − Ui)

(35)

The minus sign comes from the definition of U .
Combining (32) with (35) then gives

Kf −Ki = − (Uf − Ui)
Ki + Ui = Kf + Uf (36)

In other words the total energy

E = K + U (37)

is the same at the initial and final times: energy is
conserved.

If there are several conservative forces, the above
still holds for F being the net force and U being
the total PE, which can be expressed as the sum of
PEs due to each force — here relying on the fact
that W is additive.

Thus we get the second statement: If the forces
are conservative, then total energy E is conserved.
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