
Integration: Part 1

September 24, 2015

Integration is introduced on a stand-alone basis. In-
tegrals are defined as the limit of a sum, leading to
numerical methods for their evaluation. The funda-
mental theorem of calculus allows elementary func-
tions to be integrated. Some advanced techniques
are in the next module.
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1 Definition and properties

Integration has been introduced through the exam-
ple of work done by a force. This module repeats
some of the material, but on a stand-alone and gen-
eral basis.

1.1 Definition

Let F (x) be a smooth function with x defined on
the real line (or a real interval). The integral of F
over an interval (a, b), is defined as∫ b

a

F (x) dx ≡ lim
∆x→0

∑
F (x) ∆x (1)

The RHS is a shorthand for the following proce-
dure:

• Chop the interval (a, b) into short segments of
length ∆x.

• In each interval evaluate F (x) at some point
and calculate the product F (x) ∆x.

• Add them all up.

• Repeat the procedure for smaller and smaller
∆x until the value converges.

The notation is meant to be suggestive:∑
7→
∫

, ∆x 7→ dx (2)

In physics we often omit the limit symbol and re-
gard ∆x as small or infinitesimal:∫ b

a

F (x) dx =
∑

F (x) ∆x (3)

1.2 Graphical representation

Before taking the limit
The algorithm is illustrated in Figure 1, and the
dot shows where the function is evaluated in a typ-
ical interval — the point is deliberately chosen ran-
domly. Each term in the sum (3) is the area of a
strip. Provided the function is smooth, evaluating
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the function at different points leads to only a tiny
difference which vanishes when ∆x→ 0.

To show this more precisely, Figure 2a and Fig-
ure 2b illustrate two ways of evaluating the func-
tion. The difference is shown in Figure 2c, where

width = ∆x

height ≈ slope×∆x ∝ ∆x

area ∝ (∆x)2 (4)

The number of intervals ∝ (∆x)−1. So the total er-
ror is ∝ ∆x ∝ N−1 if the entire interval is chopped
into N segments.

Upon taking the limit
If we chop into many many tiny intervals, then the
area becomes equal to the area under the curve, as
illustrated in Figure 3. The segments ∆x can have
different lengths, so long as all the lengths approach
zero in the limit.

Sign convention
Since the integral involves F ∆x, we need to state
the sign convention for each factor.

If F (x) is negative, then the integral is nega-
tive. This is also true for the contribution of a
sub-interval (Figure 4): if the graph of F (x) lies
below the axis, then the “area under the curve” is
negative.

For the sign of ∆x, the convention is as follows.
Given an integral∫ b

a

(. . .) dx (5)

Define a series of points x0 = a, x1, x2, . . . , xN−1,
xN = b. The lengths of the intervals are

(∆x)i = xi − xi−1 (6)

for i = 1, . . . , N . Thus

N∑
i=1

(∆x)i = b− a (7)

This definition is valid whether b > a (the “normal”
case) or b < a, or even if the sequence {xn} is not
monotonic (i.e., there is some “doubling back”), so
long as the lengths of all the segments approach
zero. Some “unusual” possibilities are illustrated
in Figure 5.

But in the most common case where the sequence
{xn} goes monotonically (and typically in equal
steps) from a to b, it means that ∆x has the same
sign as b − a. If b < a, then there is a minus sign
coming from ∆x.

There are two complementary points of view: We
need an intuitive understanding about the signs;
but at the same time, the rules of integration will
automatically take care of the signs.

Problem 1
Determine the signs of the following integrals∫ 0

π

sinx dx ,

∫ 1

∞

2

x2
dx (8)

The second integral is related to the PE of an at-
tractive inverse-square force. §

1.3 Additivity

Two additivity (or linearity) properties follow triv-
ially from the definition.

Additivity in the integrand∫ b

a

[α1F1(x) + α2F2(x)] dx

= α1

∫ b

a

F (x) dx+ α2

∫ b

a

F2(x) dx (9)

Additivity in the interval∫ c

a

F (x) dx =

∫ b

a

F (x) dx+

∫ c

b

F (x) dx

(10)

which is valid for any a, b, c without requiring that
a < b < c.

1.4 Indefinite integral

We are often interested in how the integral depends
on the upper limit, holding the lower limit fixed,
e.g., ∫ x

r

F (x′) dx′ (11)

where r is any convenient reference point. The no-
tation is often simplified.
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First, if the reference point is changed from r to
s, the difference is just the constant

C =

∫ s

r

F (x′) dx′ (12)

So we can omit the lower limit, with the under-
standing that there is an undetermined additive
constant C.

Second, when there is no danger of confusion, the
dummy variable in the integrand is also written as
x. Thus we have (see later if you do not know how
to integrate yet)∫ x

x2 dx = (1/3)x3 (13)

and “plus constant” is understood. Such expres-
sions are said to be indefinite integrals.

For a definite integral, we evaluate at the two
limits and take the difference, e.g.,∫ b

a

x2 dx

= (1/3)x3
∣∣b
a

= (1/3)b3 − (1/3)a3 (14)

2 Numerical methods

The only general method to evaluate an integral is
“chop and add”, based on the definition. This sec-
tion introduces several numerical methods with in-
creasing sophistication; beginning students should
focus on the first two. The accuracy is analyzed in
terms of N , the number of intervals adopted.

We illustrate with the integral

I =

∫ 1

0

1

1 + x2
dx (15)

which (see next module) has the exact value

π

4
= 0.785 398 138 397 448 . . . (16)

All numerical algorithms and results are in the
spreadsheet num.xlsx. Each method is shown on
one sheet, with two versions (a, b) in which N dif-
fers by a factor of 2.

2.1 General formalism

Chop the range of integration (a, b) of length
L = b − a into N intervals. A typical inter-
val is (x−c, x+c), where x is the midpoint and
2c = ∆x = L/N is the length, assumed small.

The integral over the interval is F̄ · (2c), where
F̄ is the true average of F :

F̄ =
1

2c

∫ c

−c
F (x+ξ) dξ (17)

All methods are based on approximating F̄ by a
weighted average of F values in the interval

F̃ =
∑
j

wjF (x+ αjc) (18)

where the points at αj (−1 ≤ αj ≤ 1) are to be
sampled with weights wj (

∑
j wj = 1).

2.2 Naive method

The naive method (based on the definition) is to
evaluate F at one arbitrary point in each interval,
say the leftmost (L) or rightmost (R) point (i.e.,
α = − 1 or +1); see Table 1 and sheets 1, 2 in
num.xlsx. The error scales as N−1, and it is easy to
obtain accuracy at the few percent level for N ∼ 10.

N value FE
1a L 10 0.8100 3.0× 10−2

1b L 20 0.7978 1.6× 10−2

2a R 10 0.7600 − 3.3× 10−2

2b R 20 0.7728 − 1.6× 10−2

Table 1. Four different ways of using the naive
method. FE is the fractional error.

2.3 Taking midpoint

It is better to evaluate F at the midpoint (M), in
other words using α = 0; results are in Table 2 and
sheet 3 in num.xlsx. The error scales as N−2. It is
easy to obtain 4 figure accuracy.

N value FE
3a M 10 0.7856 2.6× 10−4

3b M 20 0.7855 6.6× 10−5

Table 2. Two different evaluations using the mid-
point. FE is the fractional error.
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2.4 Two adjustable points per inter-
val*

* This subsection is more advanced and can be
skipped.

We can do better with two adjustable points per
interval (2AP). Let

F̃ =
1

2
[F (x−αc) + F (x+αc)] (19)

in other words w1 = w2 = 1/2, −α1 = α2 = α. It
turns out that the best choice is α = 1/

√
3, and

the error decreases rapidly as N−4. Results are in
Table 3 and sheet 4 in num.xlsx. There is extremely
high accuracy with only small N .1

N value FE
4a 2AP 5 0.7854 9.0× 10−9

4b 2AP 10 0.7854 1.4× 10−10

Table 3. Two different evaluations using two ad-
justable points per interval. FE is the fractional
error.

2.5 Three fixed points per interval*

* This subsection is more advanced and can be
skipped.

We can also use three fixed points (3FP). For an
interval (x− c, x+ c), sample at x− c, x, x+ c. The
adjustable parameter is the weight. For symme-
try and requiring the total weight to be unity, this
means using

F̃ = w[F (x−c) + F (x+c)] + (1−2w)F (x)

(20)

It turns out that if w = 1/6, then the leading error
will go as N−4. This means the relative weights of
the three terms are 1, 4, 1.

Simpson’s rule
Denote the three points of the first interval as 1L,
1M, 1R and those of the second interval as 2L, 2M,
2R etc. Then notice that 1R = 2L, so the number

1In this example, there is an improvement by a factor of
64 when N is doubled, whereas we expect a factor of only
24 = 16. This phenomenon, as well as the fantastic accuracy,
is an accident in the present example, where the N−4 error
term very nearly vanishes, leaving the next term N−6. See
the Problem in the Appendix.

of function evaluations is ∼ 2N and not ∼ 3N , i.e.,
not more than for two adjustable points, but with
the advantage that the points are now regular.

In short, if we organize all the points (1L, 1M,
1R=2L, 2M, 2R=3L, . . . ) in a sequence with
function values Fn, then the relative weights are
wn = 1, 4, 2, 4, 2, 4, . . . , 2, 4, 1. (Consider the first
entry of weight 2. This consists of 1 from 1R and
1 from 2L.) So Simpson’s rule is∫ b

a

F (x) dx =

∑
wnFn∑
wn

(b− a) (21)

Results are in Table 4 and sheet 5 in num.xlsx. As
before, there is extremely high accuracy even with
small N .2

N value FE
5a 3FP 5 0.7854 − 1.3× 10−8

5b 3FP 10 0.7854 − 2.0× 10−10

Table 4. Two different evaluations using three
fixed points per interval. FE is the fractional er-
ror.

2.6 Summary

Table 5 summarizes the convergence properties of
various methods.

p where accuracy
1 any N−1

1 midpoint N−2

2 adjustable N−4

3 fixed N−4

Table 5. Summary of different methods using p
points per interval and their accuracy in terms of
the number of intervals N .

Problem 1
How would you formulate an algorithm with 3 ad-
justable points per interval and how would the er-
ror depend on N? (Do this after you study the
Appendix.) §

Improving efficiency
The spreadsheet shows the logic but has not been
optimized for efficiency.

2Again, an accident in this example eliminates the N−4

term, making the error go as N−6.
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• Each ∆x is evaluated by subtracting two
neighbouring values of x. But for uniform in-
tervals, we can simply refer to a constant value,
and save many subtractions.

• If the function values encountered are Fi,
then the algorithm in the spreadsheet is, say,∑
i (Fi ∆x), but it is better to change the algo-

rithm to (
∑
i Fi) ∆x, which saves many multi-

plications.

These improvements become important when N is
very large.

Using the numerical method
Until you learn other software packages (e.g., Math-
ematica, MATLAB, FORTRAN, C++), you may
like to use the spreadsheet provided as a template
for evaluating integrals numerically. All you need
to do is to replace (and then copy) the formula for
evaluating F .

Problem 2
Using any of the numerical schemes, evaluate∫ 1/2

0

dx√
1− x2

(22)

to 4 digits. §

Problem 3
Likewise evaluate

G(ξ) =

∫ 2π

0

dθ

(1 + 2ξ cos θ + ξ2)1/2
(23)

for ξ = 0.3, 0.5, 0.7. This integral arises in deter-
mining the rate of precession of a planetary orbit
(e.g., that of Mercury) due to other planets.3

3 Fundamental theorem of
calculus

The fundamental theorem of calculus states that
integration is the inverse of differentiation.

3.1 Proof

Let

Φ(x) ≡
∫ x

0

F (x) dx (24)

3See KH Lo, K Young and BYP Lee, “Advance of Perihe-
lion”, Am. J. Phys., 81, 695 (2013). doi 10.1119/1.4813067.

Then

Φ(x+∆x)− Φ(x)

=

∫ x+∆x

a

F (x) dx−
∫ x

a

F (x) dx

=

∫ x+∆x

x

F (x) dx = F (x) ∆x (25)

Re-arranging terms

F (x) =
Φ(x+∆x)− Φ(x)

∆x

=
dΦ(x)

dx
(26)

In all the above, ∆x is supposed to be infinitesimal.

3.2 Two statements

The above statement can be written as

d

dx

∫ x

a

F (x) dx = F (x) (27)

or schematically

d

dx

∫ x

(. . .) dx = (. . .) (28)

Or we can write it as∫ x

F (x) dx = Φ(x) (29)

and inserting (26) into this we get∫ x d

dx
Φ(x) dx = Φ(x) (30)

or schematically∫ x d

dx
(. . .) dx = (. . .) (31)

In short

d

dx

∫
=

∫
d

dx
= I (32)

where I is the identity operation.
In fact, the notation of calculus makes all this

intuitive. Start from (30):∫
d

dx
Φ(x) dx [Cancel dx]

=

∫
dΦ [Cancel

∫
against d ]

= Φ (33)
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3.3 Applications

Using this inverse property, we immediately get the
following results:∫ x

xn dx =
1

n+1
xn+1 , n 6= − 1∫ x

cosx dx = sinx∫ x

sinx dx = − cosx∫ x

ex dx = ex (34)

To prove these, just differentiate the RHS. In the
first example, n does not have to be an integer.

A special case
In the integration of a power, the case of 1/x is ex-
cluded. We shall deal with this in the next module
through change of variables. But it is interesting to
present here another (and less conventional) deriva-
tion which emphasizes continuity with the other
“normal” cases.

Consider, for n 6= 0 but small∫ v

u

xn−1 dx =
1

n
xn|vu

=
1

n
(vn − un) =

1

n

(
en ln v − en lnu

)
=

1

n
[(1 + n ln v + . . .)− (1 + n lnu+ . . .)]

= ln v − lnu+O(n) (35)

in which the exponentials have been expanded in
powers of n. Taking n→ 0 gives∫ v

u

x−1 dx = ln v − lnu (36)

or for the indefinite integral∫ x

x−1 dx = lnx (37)

In fact, we can say that,∫ x

xn−1 dx = C(n) + lnx+O(n2) (38)

where, as n → 0, the only singular part is in C(n)
— which does not matter. This derivation shows

that lnx is “like” (1/0)x0. This technique of iso-
lating an infinity in one place where it does not
matter is important in the theory of renormaliza-
tion in quantum field theory.

Turning (37) around, we have

d

dx
lnx =

1

x
(39)

We then also have the result∫ x

lnx dx = x lnx− x (40)

easily verified by differentiating the RHS.

Appendix

A Derivation of numerical al-
gorithms

The true average of F is

F̄ =
1

2c

∫ c

−c
F (x+ξ) dξ

=
1

2c

∫ c

−c

[ ∞∑
n=0

1

n!
F (n)ξn

]
dξ

=

∞∑
n=even

1

(n+1)!
F (n)cn (41)

where F is expanded in a Taylor series, F (n) is the
nth derivative evaluated at x, and the extra factor
of 1/(n+1) comes from the integral

∫
ξn dξ.

On the other hand

F̃ =
∑
j

wjF (x+αjc)

=
∑
j

wj

[∑
n

1

n!
F (n)(αjc)

n

]
(42)

which, upon reversing the order of summation,
gives

F̃ =

∞∑
n

Dn

n!
F (n)cn

Dn =
∑
j

wjα
n
j (43)
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The terms with odd n will be zero if the points and
weights are chosen symmetrically.

It is obvious that (a) D0 gives the correct value
of 1 if the weights add up to unity; (b) D1 = 0 if
the points and weights are symmetrical. The two
advanced methods (2AP, 3FP) both use one ad-
justable parameter to ensure D2 = 1/3, namely∑

j

wjα
2
j =

1

3
(44)

If F̃ gives correctly the c2 term and the c3 term
vanishes, the leading error will go as c4 ∝ N−4.

Two adjustable points
The choice in (19) is w1 = w2 = 1/2, −α1 = α2 =
α. When placed into (44), this gives the condition

α =
1√
3

(45)

Three fixed points
The choice in (20) is w1 = w2 = w, w3 = 1 − 2w;
α1 = −1, α2 = 1, α3 = 0. Putting this into (44)
gives

w + w + 0 =
1

3
(46)

or w = 1/6. In other words, the weights to be
attached to the points (x−c, 0, x+c) (or L, M, R)
are 1/6, 4/6, 1/6, or in relative terms 1, 4, 1.

Problem 4
Both methods above match the F (2)c2 term, so the
leading error should be ∝ F (4)c4 ∝ N−4. Yet the
errors in Table 3 and Table 4 go as N−6. Why?

Let the integral be divided into N intervals cen-
tered at xj , each of length 2c. The leading term in
the error is proportional to

∑
j

F (4)(xj) ≈
1

2c

∫ b

a

F (4)(x) dx

=
1

2c

[
F (3)(b)− F (3)(a)

]
(47)

Show that the square bracket on the RHS in (47)
is zero in the particular example. Therefore the
leading error will be the next term, which goes as
N−6. §
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