
Complex variables: Part 2

August 11, 2015

This module introduces some advanced topics.
These are not needed in elementary physics. Only
a sketch is provided, to convey a taste of the power
of complex analysis. The full apparatus will take
more effort to learn.

Contents

1 Differentiation 1
1.1 Rules . . . . . . . . . . . . . . . . . . 1
1.2 Cauchy–Riemann conditions . . . . . 1
1.3 Harmonic functions . . . . . . . . . . 3

2 Integration 4
2.1 Rules . . . . . . . . . . . . . . . . . . 4
2.2 Cauchy integral theorem . . . . . . . 4
2.3 Residue and meromorphic functions 5
2.4 Cauchy integral formula . . . . . . . 6
2.5 Roots . . . . . . . . . . . . . . . . . 6

3 Vector representation* 7
3.1 Integral and curl . . . . . . . . . . . 7
3.2 Divergence . . . . . . . . . . . . . . 7
3.3 Laplacian and harmonic property . . 8

1 Differentiation

1.1 Rules

The derivative is the limit of a ratio:

df

dz
= lim

∆z→0

∆f

∆z
(1)

This expression involves two subtractions and one
division. But since complex numbers obey the
same arithmetic rules as real numbers, differenti-
ation proceeds in exactly the same way.1

1There is an implicit condition: the function is smooth
enough so that the limit exists. In almost all cases in physics,

For example:

d

dz
zn = nzn−1

d

dz
eiz = ieiz

d

dz

1

z
= − 1

z2

d

dz

eiz − 1

z
=

ieiz

z
− eiz − 1

z2

=
eiz(iz − 1) + 1

z2
(2)

The derivative of 1/z exists except at z = 0. In
the last example, the point z = 0 is perfectly fine.
A complex function is said to be analytic if it is
differentiable (at a point or in a region).

Obviously the sum, difference, product and quo-
tient of analytic functions are also analytic, in the
case of the quotient excluding points where the de-
nominator vanishes. A power series is the limiting
case of a sum, and every term anz

n is differentiable.
Thus a function represented by a power series is an-
alytic at all points where the series converges.2

1.2 Cauchy–Riemann conditions

Two real functions of two real variables
The above looks very simple, but analyticity im-
poses strong conditions which are best revealed
when we consider a complex function f(z) as two
real functions of two real variables: write z as x+yi
and also

f = u(x, y) + v(x, y)i (3)

the smoothness condition can be taken for granted. In fact,
we shall often adopt a sloppy notation and not write the limit
sign, with the understanding that ∆ denotes differences that
are infinitesimal.

2Strictly speaking, only if the series converges uniformly,
but we shall not worry about this nicety here.
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Example 1
Decompose f(z) = z2 into two real functions.

f(z) = (x+ yi)2

= (x2 − y2) + 2xyi

u(x, y) = x2 − y2

v(x, y) = 2xy (4)

§

Example 2
Decompose f(z) = eiz into two real functions.

f(z) = eiz = eix e−y

= (cosx+ i sinx) e−y

u(x, y) = e−y cosx

v(x, y) = e−y sinx (5)

§

Partial derivatives: a reminder
For a function of several variables (such as u(x, y)),
the partial derivative with respect to one variable
is just like an ordinary derivative, but treating all
the other variables as constants. Partial derivatives
are denoted by the symbol ∂ instead of d. Thus

∂u

∂x
= lim

∆x→0

u(x+ ∆x, y)− u(x, y)

∆x
(6)

and likewise for ∂/∂y. In the following we shall
often adopt a sloppy notation and not write the
limit.

Mixed partial derivative
Mixed partial derivatives in different orders are
equal3

∂

∂x

∂

∂y
=

∂

∂y

∂

∂x
(7)

The proof is straightforward if reduced to differ-
ences. Let a, b denote small quantities that go to
zero.

∂u(x, y)

∂x

= (2a)−1[u(x+ a, y)− u(x− a, y)]

∂2u(x, y)

∂y∂x
=

∂

∂y

∂u(x, y)

∂x

3Subject to smoothness conditions which we shall not
worry about.

= (2b)−1

{
∂u(x, y + b)

∂x
− ∂u(x, y − b)

∂x

}
= (4ab)−1{[u(x+ a, y + b)− u(x− a, y + b)]

− [u(x+ a, y − b)− u(x− a, y − b)]}
= (4ab)−1(u++ + u−− − u+− − u−+) (8)

in obvious notation. The mixed derivative in the
other order gives the same result.

Two ways of taking the difference
A derivative compares function values at two
nearby points. But on the complex plane, there are
two ways to take this difference, with the nearby
points separated either horizontally (∆z = ∆x) or
vertically (∆z = i∆y). In the first case

df

dz
=

u(x+ ∆x, y)− u(x, y)

∆x

+
iv(x+ ∆x, y)− iv(x, y)

∆x

=
∂u

∂x
+ i

∂v

∂x
(9)

In the second case

df

dz
=

u(x, y + ∆y)− u(x, y)

i∆y

+
iv(x, y + ∆y)− iv(x, y)

i∆y

= − i∂u
∂y

+
∂v

∂y
(10)

But (9) and (10) must be equal, giving the Cauchy–
Riemann conditions

∂u

∂x
=

∂v

∂y
(11)

∂u

∂y
= −∂v

∂x
(12)

Problem 1
Check that u and v in Examples 1 and 2 satisfy the
Cauchy–Riemann conditions. §

Real and imaginary parts are mutually de-
pendent
The Cauchy–Riemann conditions mean that u de-
termines v up to a constant, and vice versa.

Example 3
Suppose we know

u(x, y) = e−y cosx (13)
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From (11)

∂v

∂y
=

∂u

∂x
= −e−y sinx (14)

Next integrate this with respect to y; remember
that in this process x is regarded as a constant.
Thus

v = e−y sinx+ C(x) (15)

There is a “constant” of integration — constant as
far as y is concerned, so it can be a function of x.
To determine C(x), differentiate with respect to x:

∂v

∂x
= e−y cosx+ C ′(x) (16)

Use (12) for the LHS:

− ∂u

∂y
= e−y cosx+ C ′(x) (17)

Since u is known, the LHS can be evaluated and it
cancels the first term on the RHS, giving C ′ = 0.
Thus

v = e−y cosx+ C (18)

where C is now truly a constant, i.e., independent
of both x and y. We recover the function v in Ex-
ample 2, up to an additive constant. §

Problem 2
(a) Let u = x2 − y2, Determine v.
(b) Repeat for u = x3 − 3xy2. §

But wait a minute. Were we lucky? Look at (17)
and the analogous equation encountered in Prob-
lem 2. What if the LHS and the first term on
the RHS fail to cancel completely, leaving some-
thing depending on y? Then it cannot be equal to
C ′(x). As an example, see what happens if you let
u = e−y cos 2x. We come back to this issue in the
next subsection.

1.3 Harmonic functions

Analytic function leads to harmonic func-
tions
The Cauchy–Riemann conditions also imply condi-
tions on each of u and v.

∂

∂x
(11) ⇒ ∂2u

∂x2
=

∂2v

∂x ∂y

∂

∂y
(12) ⇒ ∂2u

∂y2
= − ∂2v

∂y ∂x
(19)

Add and note that the mixed partial derivatives on
the RHS are the same. Thus(

∂2

∂x2
+

∂2

∂y2

)
u(x, y) = 0 (20)

The same holds for v. Functions satisfying this
condition (in 2D) are said to be harmonic.

Thus the real part of an analytic function is heav-
ily constrained; the same is true of the imaginary
part. This constraint is just the Laplace equation
in 2D, satisfied by an electrostatic potential in vac-
uum.

Example 4
Express the harmonic function u = < zn in terms
of polar coordinates.

Thinking of (x, y) as a point in 2D plane and use

the notation r = |z| =
√
x2 + y2. Thus

z = reiθ

zn = rneinθ

u = < zn = rn cosnθ (21)

Thus: if a harmonic function depends on the radius
as rn, then it must depend on the angle as cosnθ
(or sinnθ if we consider − izn). §

Problem 3
Construct another harmonic function from u =
< sin z/z. Hint: Write the sin in terms of expo-
nentials, and then z = x+ yi. §

Harmonic function leads to analytic function
We now prove that if u(x, y) is a harmonic function,
then it can be written as the real part of an analytic
function f(z). All we need to do is construct v as
in Example 3, but in general terms.

Start with u(x, y) and use

∂v(x, y)

∂y
=

∂u(x, y)

∂x

v(x, y) =

∫ y

0

∂u(x, y′)

∂x
dy′ + C(x)

∂v(x, y)

∂x
=

∫ y

0

∂2u(x, y′)

∂x2
dy′ + C ′(x)

C ′(x) = − ∂u(x, y)

∂y

−
∫ y

0

∂2u(x, y′)

∂x2
dy′ (22)

where in the last step we have used (12). The last
equation is consistent (and can be integrated to give
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C(x)) if and only if the RHS is independent of y;
so we check

∂ (RHS)

∂y

?
= 0 (23)

This is precisely the harmonic condition on u.

2 Integration

2.1 Rules

An integral
∫
f(z) dz is just the limiting value of∑

f(z) ∆z — involving multiplication and addi-
tion. Since complex numbers obey the same rules of
arithmetic as real numbers, exactly the same rules
of integration apply. For example,∫

zn dz =
1

n+ 1
zn+1∫

eaz dz = a−1eaz∫
cos az = a−1 sin az (24)

There is something deep lurking behind simple
formulas like these. To appreciate the subtlety, first
consider the case of a definite integral of a real vari-
able:

F (ζ) =

∫ ζ

0

f(x) dx (25)

We have arbitrarily taken the lower limit to be
0; the same argument below applies for any fixed
lower limit. There is only one way to go from 0
to ζ along the real line.4 So there is no need to
specify the path for the integral. But now take the
analogous case of complex variables

F (ζ) =

∫ ζ

0

f(z) dz (26)

where ζ is some complex number. There are many
different paths γ linking 0 to ζ; Figure 1a shows
two of them, γ1 and γ2. The innocuous formulas
such as (24) imply that the answer depends only

4Of course one can go to some ζ′ > ζ and then double
back, but the part ζ to ζ′ is traversed twice, in opposite
directions, and contributes zero to the integral.

on the endpoint ζ, and not on the path γ. This in
turn means that the integral along

γ = γ1 − γ2 (27)

is zero, where the notation means the path along
γ1 and then in the reverse direction along γ2; see
Figure 1b. Such a curve γ is closed, and we in-
dicate an integral along a closed curve by a small
circle on the integral sign. Thus we expect∮

f(z) dz = 0 (28)

provided f is analytic everywhere inside the closed
curve. We now prove this statement explicitly. Al-
though it does not matter in the above formula, the
convention for closed-loop integrals is always to go
along the path counter-clockwise.

2.2 Cauchy integral theorem

We now prove (28), called the Cauchy integral the-
orem.

A small rectangle
First consider an infinitesimal rectangle centered
at z0, with width 2a and height 2b. Thus the four
corners are z = z0 ± a ± bi. We enumerate the
midpoints zm and the lengths ∆z of the four sides
of the rectangle.

side zm ∆z

bottom z0 − bi 2a
right z0 + a 2bi
top z0 + bi −2a
left z0 − a −2bi

Table 1. The midpoints and the lengths of the four
sides of the rectangle.

∮
f(z) dz =

∑
f(zm)∆z

= [f(z0 − bi)− f(z0 + bi)](2a)

+ [f(z0 + a)− f(z0 − a)](2bi)

= [(df/dz)(−2bi)](2a)

+ [(df/dz)(2a)](2bi) = 0 (29)

The point is that whether one takes differences hor-
izontally or vertically, it involves the same df/dz.
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Any closed curve
It is easy to generalize to other closed curves by
combining many small rectangles, as illustrated in
Figure 2. The “internal” sides cancel, and only
the integral over the boundary remains. Thus we
prove the Cauchy integral theorem.

In one sense we can say that the proof is unneces-
sary: formulas such as (24) show explicitly that the
value of the integral depends only on the endpoint,
not on the path.

2.3 Residue and meromorphic func-
tions

What if the function is not analytic?

First-order pole
Consider the function

f(z) =
1

z − ζ
(30)

which has a first-order pole at ζ. Let γ be any
closed curve that goes round ζ once in the counter-
clockwise direction (Figure 3), and consider the
closed loop integral∮

γ

f(z) dz (31)

First, the curve can be replaced by γ′ (Figure 3),
which is a small circle of radius r around ζ: the
difference between the two is γ′′ (Figure 4), inside
which the function is analytic.5 On the circle, let

z − ζ = reiθ

dz = ireiθ dθ∮
dz

z − ζ
=

∫ 2π

0

ireiθ dθ

reiθ

=

∫ 2π

0

i dθ = 2πi (32)

Higher-order pole
Consider the function

f(z) =
1

(z − ζ)n
(33)

5Note that the pole at ζ lies outside the curve. In other
words, if the curve γ′′ is shrunk to a point, it does not cross
the pole.

with n > 1. By the same argument we get∮
dz

(z − ζ)n
=

∫ 2π

0

ireiθ dθ

rneinθ

=

∫ 2π

0

ir1−n ei(1−n)θ dθ

= ir1−n 1

i(1− n)
ei(1−n)θ

∣∣∣2π
0

= 0 (34)

So for poles of various orders, the case n = 1 is very
special.

Meromorphic functions
Suppose a function has a pole of some finite order,
and can be expanded as

f(z) =
bN

(z − ζ)N
+ . . .+

b1
z − ζ

+ P (z)

P (z) =

∞∑
n=0

an(z − ζ)n (35)

In other words, apart from the inverse powers
shown, the rest is a power series P (z) which is ana-
lytic. Such a series is called a Laureant series, and
captures a large class of functions. A function that
is (a) analytic except at a finite set of points ζj and
(b) has a Laureant series expansion at each such
point is said to be meromorphic.

Integral around a pole
Take the function f(z) in (35) and consider∮
γ
f(z) dz around a closed curve γ going around

the pole ζ once in the counter-clockwise sense. In-
tegrate term by term. Of the inverse powers, only
the b1 term survives; the power series is analytic
and gives zero for a closed curve. Hence∮

f(z) dz = 2πi b1 (36)

This is more often written as

1

2πi

∮
f(z) dz = Res (ζ) (37)

where the residue, denoted by Res, is simply the co-
efficient b1 in the Laureant series.6 If the path en-
closes several poles, then we add up all the residues.

6Of course the residue and the Laureant series refer to a
specific function f(z) which is understood. If there is any
ambiguity, then the notation should distinguish which func-
tion we are talking about.
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Example 5
Find

I =

∮
1 + 2z2

sinπz
dz (38)

around a small closed curve enclosing the origin.
Write the integrand as

1 + 2z2

sinπz
=

1

z

[
(1 + 2z2)z

sinπz

]
(39)

where the square bracket is analytic at z = 0. We
simply evaluate the square bracket in the limit z →
0 to get

Res (0) = π−1

I = 2i (40)

§

Problem 4
Find the same integral I but for a path that en-
closes the two points z = 0, 1. §

A useful formula
Consider a function of the form

f(z) =
g(z)

(z − ζ)n+1
(41)

where n ≥ 0 and g(z) is analytic. If we expand g
in a Taylor series, it is obvious that the residue of
f is

Res (ζ) =
1

n!
g(n)(ζ) (42)

Problem 5
Evaluate the integral∮

eaz

z12
dz (43)

for a loop around the origin. §

2.4 Cauchy integral formula

From the above, we get an important result

f(ζ) =
1

2πi

∮
γ

f(z)

z − ζ
dz (44)

where γ is any closed contour that goes around ζ
once, and f is analytic on γ and its interior. The

proof is very simple: The only pole of the integrand
is at z = ζ, with the residue given by f(ζ).

But this formula has some powerful and perhaps
surprising consequences.

• An analytic function on a domain D is com-
pletely determined by the values on the bound-
ary of D. Roughly speaking, the value at ζ is
some average of the values on the boundary,
with a weight inversely proportional to the dis-
tance. This is made more precise in a special
case in Problem 6.

• Remember that an analytic function is defined
as having a first derivative. But the formula
(44) can be differentiated with respect to ζ any
number of time, giving

f (n)(ζ) =
n!

2πi

∮
γ

f(z)

(z − ζ)n+1
dz (45)

Thus, f is infinitely differentiable.

Problem 6
As a simple application of the Cauchy integral for-
mula, show that the value of a harmonic function
u at any point on the x–y plane is exactly equal to
the average value on any circle around that point.
Without loss of generality, take the point to be the
origin and use polar coordinates: The claim is

u(0, 0) =
1

2π

∫ 2π

0

u(r, θ) dθ (46)

for any r > 0. Hint: Take the real part of (44). §

2.5 Roots

Counting roots
Suppose f(z) is an analytic function that has a root
at z = ζ. Consider

I =
1

2πi

∮
f ′(z)

f(z)
dz (47)

around a closed path enclosing the root. Since f(z)
is analytic, we can represent it as a power series in
(z − ζ); the zero-order term is absent because ζ is
a root. We assume ζ is a simple root. Thus

f(z) = a1(z − ζ) + a2(z − ζ)2 + ...

f ′(z) = a1 + 2a2(z − ζ) + . . .

f ′(z)/f(z) = 1/(z − ζ) + . . . (48)
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Note that a1 cancels and the coefficient in f ′/f is
exactly 1. So that the residue is exactly 1, and

1

2πi

∮
f ′(z)

f(z)
dz = 1 (49)

If the path encloses n simple roots at ζj , j =
1, . . . , n, then we get a term like (49) for each pole,
and the integral gives the total number of roots
inside the contour.

A root of order k counts as k roots for this pur-
pose, since in this case the power series starts at
the kth term:

f(z) = ak(z − ζ)k + ...

f ′(z) = akk(z − ζ)k−1 + . . .

f ′(z)/f(z) = k/(z − ζ) + . . .

I = k (50)

This gives us a way to count roots inside any con-
tour γ.

Roots of polynomials
We now prove the theorem that an nth order poly-
nomial

f(z) = anz
n + ...+ a1z + a0 (51)

with an 6= 0 has exactly n roots, with high-order
roots counted according to the order of the root. To
prove this, consider the integral (47) along a circle
of radius R→∞. On this circle, |z| = R→∞ and
only the leading term matters; thus

f(z) ≈ anz
n = anR

neinθ

f ′(z) ≈ annz
n−1 = annR

n−1ei(n−1)θ

f ′/f ≈ nR−1e−iθ

dz = d(Reiθ) = iReiθ dθ

I = (2πi)−1

∫ 2π

0

nR−1e−iθ · iReiθ dθ

= n (52)

So a sufficiently large circle encloses exactly n roots.
Suppose all the roots are contained within a disk
of radius R1. Somehow we can still “sense” the
total number of roots by evaluating the function at
|z| = R� R1.

3 Vector representation*

*This Section should be skipped if students do not
know vector calculus.

In Part I, it was already mentioned that a com-
plex number z = x+yi can be regarded as the point
P = (x, y) on a 2D plane. A differential dz can be
associated with the vector

d~r = dx î + dy ĵ (53)

Many of the properties discussed above can be put
into such vector language.

3.1 Integral and curl

Consider an integral

I =

∫
f(z) dz =

∫
(u+ iv) · (dx+ idy)

=

∫
(u dx− v dy) + i

∫
(v dx+ u dy)

=

∫
~φ · d~r + i

∫
~ψ · d~r (54)

where we have introduced vectors

~φ = u î− v ĵ
~ψ = v î + u ĵ (55)

Note the minus sign arising from i2.

These integrals around a close loop would be zero
if the curls of these vectors are zero. Let us check:7

curl ~φ =
∂φx
∂y
− ∂φy

∂x

=
∂u

∂y
+
∂v

∂x

curl ~ψ =
∂ψx
∂y
− ∂ψy

∂x

=
∂v

∂y
− ∂u

∂x
(56)

The vanishing of these curls is just the Cauchy–
Riemann conditions (11) and (12). This provides
another way to prove the Cauchy integral theorem:
that

∮
f(z) dz = 0 if f(z) is analytic everywhere

inside the contour.

3.2 Divergence

Next consider the divergence.

7In 2D, the curl has only one component.
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Problem 5
Show that

div ~φ = − curl ~ψ

div ~ψ = curl ~φ (57)

and hence both vanish as well. Note: In 3D, a div
(a scalar) cannot possibly be equal to a curl (a 3-
vector). But in 2D, a curl has only one component.
§

3.3 Laplacian and harmonic prop-
erty

Since curl ~φ = 0, we can write

~φ = ~∇Φ (58)

for some scalar Φ. Then

∇2Φ = div ~φ = 0 (59)

Thus

∇2~φ = ∇2(~∇Φ)

= ~∇ (∇2Φ) = 0 (60)

which implies

∇2u = ∇2v = 0 (61)

recovering the harmonic property in another way.
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𝐹 𝜁 =  
0

𝜁

𝑓 𝑧 𝑑𝑧

𝛾1

𝛾2

𝜁

 𝑓 𝑧 𝑑𝑧 = 0

𝛾 = 𝛾1 − 𝛾2

?

Figure 1: Is the integral along 𝛾1 and 𝛾2 the same? That is same as asking 

whether the integral around the closed loop 𝛾 = 𝛾1 − 𝛾2 is zero.
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Figure 2: If the integral around any small closed rectangle is zero, then the 

integral around any closed curve is zero.
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Pole at 𝜁

 
𝛾

= 
𝛾′

𝜁

𝛾′

𝛾

Figure 3: If there is only a pole at 𝜁, then the integral along 𝛾 and along 𝛾′ are 

the same. See the next figure for reason
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analytic inside

𝛾′′ = 𝛾 − 𝛾′

𝜁

𝛾′

𝛾

𝜁

−𝛾′

𝛾

Figure 4: The integral around 𝛾′′ is zero, because the function is analytic 

everywhere inside this closed curve. The contour 𝛾′′ is the same as 

𝛾 − 𝛾′ because the two red lines cancel.
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