
Dimensional analysis: Part I

August 11, 2015

This module introduces some elementary aspects of
dimensional analysis. Part II deals with several
more advanced topics.
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1 Units and dimensions

1.1 Fundamental units

Every physical quantity must carry a unit, e.g. a
coordinate or length x in meters (m), a mass m in
kilogram (kg), a time t in seconds (s) and a current
I in amperes (A); see first two columns in Table 1.
These are the four fundamental units1 in the Inter-
national System of Units (SI, abbreviation based
on French). In mechanics, if currents and charges
are not involved, one also speaks of the first three
as the MKS system.

quantity unit dimension
length x m L
mass m kg M
time t s T

current I A I

Table 1. Fundamental units and dimensions
1We skip temperature, which is really just energy.

A symbol such as x denotes a physical quantity
including its units. Thus we may have, for example

x = 3.0 m (1)

which is a product of a pure number and a unit.
Incidentally, the normal convention is that phys-

ical quantities are denoted in italics (e.g. x) and
units are in roman type (e.g. m).

1.2 Compound units

Compound units are built up in the natural way.
For example, since velocity is defined as

v =
∆x

∆t
(2)

its unit is m s−1.
We use square brackets to denote “the unit of”.

Thus for x, v, the acceleration a and the force F =
ma, we have

[x] = m

[v] = m s−1

[a] = m s−2

[F ] = [m] [a] = kg m s−2 (3)

and the derived unit newton (N) is defined as

N = kg m s−2 (4)

Therefore every physical quantity X must have
a unit given by four indices:

[X] = kgα mβ sγ Aδ (5)

The last factor is not necessary in mechanics if elec-
tricity and magnetism are not involved.

The special case of all indices being zero, i.e.,
the pure number 1, is also a unit. The simplest
example is angle, measured in radians (rad), which
is the ratio of two lengths (arc and radius).
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1.3 Dimensions

Of course one can use other units, e.g., lengths in
inches (in). Thus, to be more general and not be
tied down to SI units, one also refers to the concept
of dimension, in terms of length (L), mass (M),
time (T) and current (I), as shown in the rightmost
column in Table 1. If we also use square brackets
to denote dimensions, we can say, for example.

[F ] = M L T−2 (6)

For all practical purposes we can ignore the differ-
ence between the dimension and the SI unit for that
dimension.

2 Consistency and conversion
of units

2.1 Consistency in equations

Example 1
Consider the law of conservation of energy ex-
pressed as an equation

U +K = E (7)

where U , K, E are respectively the potential en-
ergy, the kinetic energy and the total energy. The
three terms must have the same dimensions, and
indeed must be expressed in the same units if we
are going to add and subtract.

Potential energy U is related to some work done2

W , which is in turn defined as some product of
force F and displacement ∆x. Kinetic energy is, in
obvious notation, K = (1/2)mv2. So let us check
that the units are correct.

[U ] = [W ] = [F ] [x]

= kg m s−2 · m = kg m2 s−2

[K] = [m] [v]
2

= kg ·
(
m s−1

)2
= kg m2 s−2 (8)

showing consistency between the two terms. §

2For the purpose here we need not worry about signs etc.

2.2 Showing units in intermediate
steps

The best way to ensure consistency of units is to
show them in all intermediate steps — although,
with experience, you can omit them provided you
first express everything in SI units, e.g., no mixture
of meter and centimeter, seconds and hours etc.

Example 2
Here is a trivial example: Calculate the distance
x covered by a car travelling at v = 120 m s−1 in
t = 200 s.

x = vt

= 120 m s−1 · 200 s

= (120× 200) ·
(
m s−1 s

)
=

(
2.4× 104

)
·
(
m �s

−1
�s
)

= 2.4× 104 m (9)

Notice how (a) the numerical values and the units
are handled separately and (b) the units are sim-
plified systematically. §

2.3 Conversion between units

Example 3
What is the distance x covered by a car travelling
at v = 60 km h−1 in t = 4.0 min?

The commonest way is to convert all quantities
to SI units first:

v = 60× (1 km)/(1 h)

= 60× (103 m)/(3.6× 103 s)

= 16.7 m s−1

t = 4.0 min = 4.0× 60 s

= 240 s

x = vt =
(
16.7 m s−1

)
· (240 s)

= 4× 103 m = 4 km (10)

Another way is to first proceed with mixed units:

x = vt = 60
km

h
× 4.0 min

= 240
km min

h
(11)

Then multiply by the following factors:

1 =
1000 m

1 km
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1 =
60 s

1 min

1 =
1 h

3600 s
(12)

The arithmetic is left for you to check. Here we just
emphasize that this trick of multiplying by unity as
a way of converting between units. §

Problem 1
(a) A star X is at a certain distance s. Suppose
we move the observation point in a direction per-
pendicular to the line of sight by 1.00 AU (1 AU =
149.6 million km), and it is found that the direction
of the line of sight changes by 1.00 sec of arc. What
is the distance s? This distance is called a parsec
(pc). Express pc in light years (ly). The speed of
light is 3.00× 108 m s−1.
(b) The speeds v of galaxies away from us and the
distances s away from us are found to be propor-
tional: v = Hs, where H is called Hubble’s con-
stant. Because v is measured in units of km s−1,
and s is measured in Mpc, the value of H is usually
given in units of km s−1 Mpc−1. Recent data show
that H ≈ 70 in these units. Express H−1 in units
of seconds.
(c) To a good approximation, H−1 is the age of the
universe. (Can you understand why?) From the
above data, find the age of the universe in Gy. §

3 Dimensional analysis

The idea of dimensional analysis can be illustrated
by an example.

Example 4
A mass m is attached to the end of a spring obey-
ing Hooke’s law: F = −kx, where F is the force
acting on the mass and x is the displacement from
the equilibrium position. The minus sign indicates
that the force is opposite to the displacement, and
the proportionality constant k is called the force
constant of the spring. This mass is pulled from
equilibrium, and goes into oscillations with ampli-
tude A. What can be said about the period T of
oscillations?

Let us suppose that T is given by

T = CmαkβAγ (13)

where C is a pure number.

First we note that

[F ] = kg m s−2

[k] = [F ] [x]
−1

= kg s−2 (14)

Then, by comparing units on both sides of (13),
we find

s = kgα
(
kg s−2

)β
mγ

= kgα+β mγ s−2β (15)

Matching powers of kg, m and s, we find

0 = α+ β

0 = γ

1 = −2β (16)

or

(α, β, γ) = (1/2,−1/2, 0) (17)

so that

T = C
√
m/k (18)

independent of the amplitude A. §

The constant C cannot be determined this way
— lunch is not completely free. But even without
knowing its value, we have made considerable ad-
vances. (a) The dependence on the parameters is
known, e.g., that the period is independent of am-
plitude. Incidentally, students should develop the
habit of checking intuitively whether the direction
of dependence makes sense: if the mass is heav-
ier (m ↑) or if the spring is softer (k ↓), then the
period is longer (T ↑). (b) If we do a single mea-
surement or a single numerical solution (i.e., for one
set of m, k, A), we would know the answer for all
parameter values. (c) Even without any measure-
ment or numerical solution, we can guess that C
cannot be very large (e.g. 103) or very small (e.g.
10−3), so we have an order-of-magnitude estimate
without any further work. In this particular case,
it turns out that there is an analytic solution, and
C = 2π, but this result is beyond the present topic
of dimensional analysis.

However, there is an implicit assumption: that
no other physical quantity is relevant, e.g. the mass
M of the moon, the speed of light c or the period
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of the earth’s rotation TE . If any such variables are
involved, then (13) would look more complicated.

Problem 2
With reference to the above example, explain the
following.
(a) Why is it not allowed for C to have units, for
example seconds? (Hint: the paragraph immedi-
ately above.)
(b) On the RHS of (13) we have assumed simple
powers. Why is it not allowed to have more com-
plicated dependence, such as sin aξ or exp(−aξ),
where a is a pure number and ξ is some combina-
tion of m, k and A? §

Problem 3
Suppose we have a spring that satisfies F = −kx3.
(a) Find the unit of k.
(b) If the period T is again given by the formula
(13), find the indices α, β and γ.
(c) If you have already learnt numerical methods,
determine the constant C in this case. §

Problem 4
A pendulum consists of a mass m tied to the end
of a string of length `. The pendulum swings on
account of gravity, whose strength is described by
the acceleration due to gravity g (i.e. the gravita-
tional force per unit mass). For small amplitudes,
the period is independent of amplitude and is given
by

T = Cmαgβ`γ (19)

Find the indices α, β and γ. (It turns out that the
constant is again C = 2π.) §

Problem 5
An aeroplane with total wing area A is flying at
speed v through air of density ρ. The lifting force
L by the air on the wings is given by

L = (C/2) · ρα vβ Aγ (20)

where the factor of 2 is a matter of convention
and the pure number C is called the lift coefficient.
We assume all dimensionless parameters (e.g., the
width-to-length ratio of the wings, the angle by
which the nose of the plane is tilted upwards, which
is called the angle of attack) are fixed; otherwise
there could be complicated dependence on these
parameters.
(a) Using dimensional analysis, determine the in-
dices α, β, γ.

(b) By performing measurements on a small model
Airbus A340 in a wind tunnel (thus much smaller
A, smaller v and approximately the same ρ), it was
determined that C = 1.5 when the plane is in the
takeoff configuration. The total mass of the actual
A340 is 2.6×105 kg and the wing area is 2×360 m2.
What speed must be achieved at take-off? Express
your answer in km h−1. §
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