
PROCEEDINGS OF SPIE

SPIEDigitalLibrary.org/conference-proceedings-of-spie

A control system for the ASTE
Polarimeter: design and testing

Lühr Sierra, Daniel Vicente, Melillanca, Javier, Vargas,
Felipe, Li, Hua-bai

Daniel Vicente Lühr Sierra, Javier Melillanca, Felipe Vargas, Hua-bai Li, "A
control system for the ASTE Polarimeter: design and testing," Proc. SPIE
11452, Software and Cyberinfrastructure for Astronomy VI, 1145237 (13
December 2020); doi: 10.1117/12.2563012

Event: SPIE Astronomical Telescopes + Instrumentation, 2020, Online Only

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 14 Dec 2020 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

A control system for the ASTE Polarimeter: Design and
testing

Daniel Vicente Lühr Sierraa, Javier Melillancaa,b, Felipe Vargasa,b, and Hua-bai Lic

aUniversidad Austral de Chile, Facultad de Ciencias de la Ingenieŕıa, Valdivia, Chile
bUniversidad de Concepción, Facultad de Ingenieŕıa, Concepción, Chile

cThe Chinese University of Hong Kong, Shatin, New Territory, Hong Kong, China

ABSTRACT

The ASTE Polarimeter (APol), developed by Dr. Li at the Chinese University of Hong Kong (CUHK), presented
a simple but innovative approach to carry out polarimetric measurements using ASTE Telescope’s TES camera.
Our group at Universidad Austral de Chile (UACh) has collaborated in the project since its early stages and was
assigned with the task of developing the control software for the instrument. The software has been developed
also keeping the simplicity concept in mind. All its functionality has been separated in simple modules which are
in charge of well defined tasks. The interfaces between the modules follow the design of modern applications and
are based on well defined standards, such as those used by internet applications. The instrument has also the
opportunity to be tested on the JCMT Telescope, and it is going to be used as the base design for a polarimeter
in the future Leighton Chajnantor Telescope (LCT). Therefore, there is a requirement that the control software
should be flexible enough to interface with at least these three telescopes, all of which run very different control
software systems. This paper presents the design and implementation of APol’s control software, as well as some
results of laboratory tests of the instrument.

Keywords: Software development, Telescopes, Control software, Polarimeter, Interfaces

1. INTRODUCTION

1.1 APol: The ASTE Polarimeter

APol is a polarimeter instrument built originally to be installed at the Atacama Submillimeter Telescope Ex-
periment (ASTE). It has been developed as a joint international collaboration leaded by Dr. Li Hua-bai and his
team at the Chinese University of Hong Kong. The polarimeter is a fore-optics module to the ASTE’s 350 GHz
Transition Edge Sensor (TES) camera. APol’s optical design and first lab-test results is described in 1.

APol consists of a rotating half-wave plate (HWP) mounted on a torque motor (TM) and a fixed wire grid
(WG) as depicted in Fig. 1 and a control unit as an interface to the telescope system as well as controlling the
TM and local storage of the instrument’s data.

This paper details the software running in the control unit. The following sections will briefly introduce the
hardware and software designs of APol’s control unit.

1.1.1 APol’s control unit hardware

APol’s control unit purposes are to control the rotation of the TM and consequently the HWP, to log the angular
position as well as other parameters and variables, and to communicate to the telescope’s system.

Tha control unit is built around a Technologic Systems TS-8550-4900 embedded ARM computer. The motor
is controlled by a Copley Controls Xenus XTL-230 servo controller with CANopen interface. The TS-8550-4900
computer includes a CAN port which is used to communicate with the Xenus controller.

APol’s data is stored locally in a solid state disk connected to the embedded computer’s SATA II port.

Further author information: (Send correspondence to Daniel Vicente Lühr Sierra)
Daniel Vicente Lühr Sierra.: E-mail: danielluhr@uach.cl, Telephone: +56 63 222 1868
Hua-bai Li: E-mail: hbli@cuhk.edu.hk

Software and Cyberinfrastructure for Astronomy VI, edited by Juan C. Guzman, Jorge Ibsen, Proc. of SPIE
Vol. 11452, 1145237 · © 2020 SPIE · CCC code: 0277-786X/20/$21 · doi: 10.1117/12.2563012

Proc. of SPIE Vol. 11452 1145237-1
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 14 Dec 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Figure 1. Schematic drawing of APol in ASTE. APol optical components are installed in ASTE’s upper cabin in the
optical path between the secondary and the tertiary mirrors.1

In order to simplify network connections to the control unit, either to interface to the telescope’s network or
to directly connect a terminal for configuration, monitoring and debugging, the control units has an Ubiquity
EdgeRouter-X Gigabit Ethernet network router.

The control unit also has power supplies for all the electronic components (24Vdc, 12Vdc and 5Vdc buses),
thermomagnetic switches, and emergency stop switch, and can optionally include a small DC-UPS.

A block diagram of the main components is depicted in Fig. 2 (left). The Figure (right) also shows a picture
of the actual box containing the control unit (SSD and Router not shown).

Power Supply
and

Energy
Management

TS-8550-4900
Embedded ARM

computer

Xenus XTL-230
Servo controller

Host Telescope
System

EdgeRouter X

Torque Motor

Encoder

Solid State
Disk

100/220 Vac

24Vdc

5Vdc

12Vdc

SATA II

Gigabit
Ethernet

Ethernet

CAN

Figure 2. Left: Block diagram of APol’s control unit. Right: APol’s control unit box.

Proc. of SPIE Vol. 11452 1145237-2
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 14 Dec 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Although originally developed to be installed at ASTE, there is also an opportunity to carry out preliminary
tests at JCMT. Therefore, the hardware, as well as the software, has been designed to be as flexible as possible
in order to adapt to the different control systems of diverse telescopes.

1.1.2 APol’s control unit software

The TS-8550-4900 embedded ARM computer runs GNU/Linux as its operating system. Technologic Systems
provide software utilities and programming libraries to configure and access all specific features of the board.
A python module implementing a library to communicate with the Xenus XTL-230 servo controller using the
CANopen protocol was developed. A REST server was implemented to provide the core functionality of APol.
The server can be accessed directly through API calls or lightweight clients can be developed according to the
specific requirements of the host telescope’s control system. The details of the software are presented in section 2.

1.2 Other alternatives ROS and ACS

Although the current control software was designed from the bottom-up specifically for the instrument and the
telescopes which will host it, another approach would have been to use a standard framework.

A framework is a set of classes that incorporate an abstract design to solve a family of related problems2.
Generally, it consists of a mixture of abstract and concrete classes, which are also known as class libraries.

A framework approach improves the flexibility and generally leads to a modular design. However, it usually
involves some extra overhead since frameworks are very general and even in their minimal configuration they
provide features which might not be needed for our instrument at this moment. Nevertheless, aiming at a long
term development of the polarimeter control software which could work with newer versions of the polarimeter
or a wider range of telescopes the use of an appropriate framework is advisable. Since the the developed software
has already been developed in a modular and lightweight approach, incorporating it into an existing framework
should not be a difficult process.

Next, we will comment two frameworks which we have considered as alternatives for future work.

1.2.1 ROS

ROS (Robot Operating System) is an open source project and an operating meta-system for robots, delivering
services such as, hardware abstraction,3 low-level device control, functionalities implementation, message transfer
between processes and package management, among others.

ROS is highly widespread and also has a fairly large development community to provide solutions to specific
problems of the framework. Although, ROS is a framework developed for use in robotics, it has been used in other
automation applications in industry. In particular, it has been applied to telescope control. Experiences carried
out ”Ckoirama” observatory of the University of Antofagasta, located 90km from the city of Antofagasta,4 and
ICETel belonging to CSIC,5 close to the city of Barcelona demonstrate such specific application.

1.2.2 ACS

The ALMA Common Software (ACS) is an application framework designed to provide a common and homoge-
neous software architecture and infrastructure, spanning the end to end needs of an Astronomical observatory,
from the Telescope Control system to high-level data flow management.6 ACS is based in CORBA LGPL public
license and since the beginning it has been developed as a general purpose application framework (i.e. not
specifically linked to ALMA needs).

2. APOL CONTROL: FROM CONCEPT DESIGN TO IMPLEMENTATION

One of the main tasks of APol’s software is to control the TM where the HWP is located and to record its angular
position. This is all done through the Xenus XTL-230 servo controller. In order to achieve the maximum speed
when transferring commands and data, the Xenus XTL-230’s CANopen interface is used, instead of the RS-232
one. The Xenus XTL-230 complies with CAN in Automation (CiA) 402 standard. A python module to access
most of the Xenus XTL-230 controller functions implemented by the CiA-402 over the CANopen protocol was
implemented. It is described in section 2.1.

Proc. of SPIE Vol. 11452 1145237-3
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 14 Dec 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

SocketCAN
Linux driver

Flask

CANopen for Python
(CiA 301 / CiA 402)

python-can

MotorControl
(Xenus Python Module)

MotorControlServer
(REST I/F)

FlaskAPI

Telescope
Network

Telescope
System

Operator console
(configuration, monitoring,

debugging)

Thin
telescope-specific

interface

APol embedded computer

EdgeRouter-X

SSD

Xenus XTL-230

Figure 3. APol’s control unit software block diagram.

The basic high-level logic of APol is provided through a REST API served by a Flask-based application. With
this approach the interface “glue” between the telescope’s system and APol can be developed in any programming
language. The details of this REST server are presented in section 2.2. The telescope’s system can interface
directly to the Flask-based server application if there is properly configured network. Otherwise, a “thin”
interface specifically built for a telescope can be implemented in APol’s embedded computer and communicate
with the telescope’s system using their available hardware and software interfaces.

The REST server application also implements the local data recording, as detailed in section 2.3. It collects
variables and parameters from the controller as well as from the embedded computer and records them to disk
periodically, adding a timestamp to each data entry. Therefore, it is critical that APol’s embedded computer
clock is in sync with the telescope’s main clock, in order to fuse the data collected by other telescope’s instrument
with APol’s data. This topic is discussed further in section 2.4.

A block diagram of the software components is presented in Fig. 3.

2.1 CAN based hardware interface

Controller Area Network (CAN) is one of the most widely used industrial communication protocols today,
providing communication services between different devices connected on a single network, both locally and
remotely. The high speed and reliability of data transport have transformed it into a widely used protocol for
applications in highly integrated control systems.7

CANopen is an open protocol that facilitates the development of applications, due to its flexibility of inter-
connection of devices in the network, taking full advantage of the CAN bus, transforming it into a high-level
protocol friendly for integrators and developers.8

The CANopen protocol is defined under sub-protocols structured in object dictionaries, each device with this
standard has a profile with all the operating characteristics. All the control systems that operate with CANopen
do so through a closed-loop, coordinated by a master device, which uses the network to transmit and receive the
commands enabled in the object dictionary of the device to be controlled.

The communication between CANopen nodes, implemented for this project, is mainly defined by three types
of messages, Service Data Object (SDO) used for the configuration and parameterization of the devices, Process
data Objects (PDO) used during the normal operation of the network to transfer data in real-time and Network
management functions that represent the profile of specific functionalities for the device such as manufacturer
data.9

Proc. of SPIE Vol. 11452 1145237-4
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 14 Dec 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Figure 4. State Machine CiA 402 standard.

2.1.1 CiA 402

The CAN in Automation (CiA) 402 is a set of standardized specifications to control the behaviour of different
devices. It is structured in such a way that each required profile is easily identifiable utilizing configurable
parameters, whose states vary depending on the control word that is sent by the host. This makes CiA 402
widely used by different vendors who implement subsets of parameters of this standard. Each sub-assembly can
contain one or more configuration profiles, as required for the application, such as position, speed or torque.10

In the Fig. 4 the possible state change sequences of an amplifier are shown.

2.1.2 The Motor Control Python Module

The Motor Control Module is a class to communicate with Copley Controls Xenus Motor Controller via CANopen.
This module contains the different commands to query the status of a variable or to configure the operating
parameters of the controller. These commands providing access control the device, use the state machine of
Fig. 4 and defines the behaviour of the device with the modes of operation. The table 1 shows a summary of
the features implemented in the Python module. Not all the Xenus controller functions exposed through the
CANopen interface have been implemented. Some of them are redundant and possible deprecated functions
whose access is available through other SDO or PDO, while other have not been implemented yet because they
are related to operation modes that are not required for the specific application. However, any feature not
specifically implemented in the library can still be accessed through raw communication using the CANopen for
Python module indicating the particular target SDO or PDO.

The Python module is built on top of the CANopen for Python module.11 The class relationships are shown in
the simplified UML class diagram of Fig. 5. The CANopen for Python module further depends on the python-can
module12 and the GNU/Linux’s SocketCAN implementation developed by Volkswagen Research.13

Due to the complexities involved in the usage of the CiA 402 State Machine, a simplified interface to the
library has been developed in the form of a REST API implemented over a web application server. This software
component is described in the next section.

2.2 REST based software interface

As it was mentioned above, an abstraction layer to the Python module interacting with the hardware was
implemented in the form of a REST server. REST or Representational state transfer was defined by Roy
Fielding in 2000.14 Before opting for a REST based approach, also XML-RPC (Remote Procedure Calling)

Proc. of SPIE Vol. 11452 1145237-5
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 14 Dec 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

Figure 5. UML class diagrams for the APol’s motor control library.

/

shutdowninit homing motor logger

start stop speed logdata reboot poweroffstart stop

Figure 6. Tree structure of REST resources exposed by the server application.

protocol15 was also considered. In fact, the first proof-of-concept of the system was based on XML-RPC. The
REST architectural style was chosen because it was found to simplify the clients code and the availability of
ready to use (out-of-the-box) implementations and frameworks.

The server is built on top of the Flask micro web framework written in Python.16

APol logic is exposed by the REST server as available resources. Currently the top-level resources are: /init,
/homing, /motor, /logger and /shutdown. The /motor, /logger and /shutdown resources have second-level
resources implemented as shown in Fig. 6

The root node of the tree (/) presents status information and the URLs to access the /homing, /motor,
/logger or /shutdown resources if the Xenus controller has already been initialized, as reported by the servo
controller itself. Otherwise it prints a warning message explaining the controller is not yet initialized and presents
an URL to the /init resource which triggers the initialization process.

The /homing resource starts the homing operation of the controller which finds the zero position of the motor
encoders. The progress of the operation is shown and after it finishes an URL back to the root node is presented.

By accessing to the /motor resource, a page with status information about the motor is shown, including
actual and target velocities. Also, the URLs to access the resources under this node are presented: /motor/start,

Table 1. Summary code implemented Motor Control Module

Total lines of code 4739
Xenus functions implemented 58.57% (164 out of 280)

Functions detail

Network Management.
Device control, configuration, and status.
Control loop configuration.
Stepper mode Support.
Homing Mode
Operation profiles: position,
velocity and torque mode.

Proc. of SPIE Vol. 11452 1145237-6
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 14 Dec 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

/motor/stop, /motor/speed/. The start and stop resources send the motor the instruction to reach the target
velocity or set the velocity to zero, respectively. The speed resource is used to set the target speed in RPM.

The /logger page indicates the status of the data logging and the /logger/start, /logger/stop and
/logger/logdata sub-resources. The first two starts and stops the data-logging facility respectively, while
the third one actually writes an entry to the disk. This resource is called periodically by the data logging
implementation described in section 2.3.

Finally, the /shutdown resource provide the /shutdown/reboot and /shutdown/poweroff URLs which tell
the computer to cleanly (i.e. turn-off the Xenus controller properly first) reboot or power-off.

2.3 Data logging to disk

Since the REST-based server is accessing the Xenus XTL-230 controller at the highest data rate possible by
the CANopen interface, it is very important to also record the angular position in timely manner. Also, it was
decided that logging the data at regular intervals was desirable. Therefore, a data-logging class was implemented
based on a Timer Object from Python’s threading interface module.

(a) (b)

Figure 7. UML class diagrams for the APol’s data-logging class. Class relationships are shown on the left (a). Main
methods are shown on the right (b).

2.4 Time synchronisation

To achieve time synchronization with the telescope’s system, APol control unit rely on a Network Time Pro-
tocol17,18 (NTP) server. To keep drift to a minimum and if the signal is available, as in the case for ASTE, a
Pulse-per-second (1PPS) signal can be processed by the embedded computer, using the included GNU/Linux
kernel driver for such signals.19

3. CURRENT PROGRESS AND TEST RESULTS

APol’s control software is currently being developed at the Universidad Austral de Chile (UACh) and is in
the last phase of development before being integrated with APol’s optics at the Chinese University of Hong
Kong (CUHK) for lab tests and field tests after that. It is important to note that the development pace has
been hindered by the global Covid-19 crisis. In particular, field tests at JCMT originally scheduled on the first
quarter of 2020 have been postponed. Also, temporal lock-downs in the cities of both universities have imposed
restrictions to access facilities and resources necessary for the development.

The control software is operational and is undergoing performance tests. Particularly, it is important to
determine how fast the angular positions can be requested from the controller and written to disk without data
losses or communication buffer overflows which might make the system to fail.

Proc. of SPIE Vol. 11452 1145237-7
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 14 Dec 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

4. FUTURE WORK

As soon as current testing at the UACh is finished, the control unit box will be sent to the CUHK to integrate
it with APol’s optics. It will then be tested in the lab to check whether the complete system works according to
the specifications. When the lab tests are complete, the instrument will be ready to be deployed and tested on
the field to the earliest opportunity.

On the other hand, it was mentioned before that integration to an existing control framework used on
telescopes such as ACS or ROS would be an important improvement of the software. This will be also be a
future line of development. The current REST-based software architecture is the correct approach to ease the
integration either with ACS or ROS since a just “thin” layer needs to be developed to interface the framework
with the REST-based server.

Furthermore, the current version of the server uses Flask integrated web server, which is acceptable for tests
and small prototypes but is not adequate for full production deployments. Therefore, the code will be update for
a full web service integration. Among other benefits, it will permit the implementation of more complex standard
authentication schemes such as HTTP-Basic, HTTP-Digest or HTTP-Token. It will also allow a reliable way to
access the instrument remotely.

Finally, a new collaboration with Universidad de Concepción (UdeC), related to the Leighton Chajnantor
Telescope (LCT), opens the possibility for the group to develop an improved polarimeter for the LCT based on
the experience gathered while developing APol. The control software will thus need to be adapted to both the
LCT system’s interface and the new polarimeter hardware design.

ACKNOWLEDGMENTS

We would like to acknowledge the Research Grants Council of Hong Kong: General Research Fund (14307118,
14304616, 14600915, 14307019); and CASSACA-CCJRF (2016 Call) (Project ID 1607), for their support to the
project.

REFERENCES

[1] Zhang, Y., Li, H.-B., Lühr, D., Takekoshi, T., Oshima, T., and Gu, Q., “Atacama sub-millimeter telescope
experiment polarimeter (APol) I: design and lab-test result,” Appl. Opt. 59, 2593–2599 (Mar 2020).

[2] Srinivasan, S. et al., “Design patterns in object-oriented frameworks,” Computer 32, 24–32 (1999).

[3] Quigley, M. et al., “ROS: an open-source Robot Operating System,” IEEE International Conference on
Robotics and Automation, ICRA 3 (2009).

[4] Villalobos, A. et al., “Diseño e implementación de un observatorio robotico teleoperado basado en Robot
Operating Systems,” Ingeniare - Revista Chilena de Ingenieria 26, 12–19 (2018).

[5] Vilardell, F. et al., “Using Robotic Operating System (ROS) to control autonomous observatories,” SPIE,
Software and Cyberinfraestructure for astronomy IV 9913 (2016).

[6] Dimarcantonio, P. et al., “An overview of the ALMA Common Software (ACS),” Mem. S.A.lt 78, 719–722
(2007).

[7] Farsi, M. and Ratcliff, K., “An introduction to CANopen and CANopen communication issues,” in [IEE
Colloquium on CANopen Implementation (Digest No. 1997/384)], 2/1–2/6 (1997).

[8] Li, W., Lijin, G., and Zheyuan, L., “Design of stm32-based canopen motion control master in transfer robot,”
in [2013 Third International Conference on Instrumentation, Measurement, Computer, Communication and
Control], 1609–1612, IEEE (2013).

[9] “Copley Motion Objects (CMO) Programmer’s Guide 2012,” (2012).

[10] Voss, W. and Hatfield, M., “Canopen–higher layer protocol based on controller area network (CAN) supports
device profiles for i/o modules, motion control,” (2005).

[11] Sandberg, C., “CANopen for Python.” https://canopen.readthedocs.io/en/latest/ (2017).

[12] “python-can documentation.” https://python-can.readthedocs.io/en/stable/ (2018).

[13] “SocketCAN GNU/Linux kernel driver.” https://www.kernel.org/doc/Documentation/networking/can.txt
(2017).

Proc. of SPIE Vol. 11452 1145237-8
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 14 Dec 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

[14] Fielding, R. T., Architectural Styles and the Design of Network-based Software Architectures, PhD thesis,
University of California, Irvine (2000).

[15] Winer, D., “XML-RPC Specification.” http://xmlrpc.com/spec.md (Jun 1999).

[16] Mufid, M. R., Basofi, A., Al Rasyid, M. U. H., Rochimansyah, I. F., and Rokhim, A., “Design an mvc model
using python for flask framework development,” in [2019 International Electronics Symposium (IES)], 214–
219 (2019).

[17] Mills, D., Martin (Ed.), J., Burbank, J., and Kasch, W., “Network Time Protocol Version 4: Protocol and
Algorithms Specification.” RFC 5905 (Proposed Standard) (June 2010). Updated by RFCs 7822, 8573.

[18] Mizrahi, T. and Mayer, D., “Network Time Protocol Version 4 (NTPv4) Extension Fields.” RFC 7822
(Proposed Standard) (Mar. 2016).

[19] Mogul, J., Mills, D., Brittenson, J., Stone, J., and Windl, U., “Pulse-Per-Second API for UNIX-like Oper-
ating Systems, Version 1.0.” RFC 2783 (Informational) (Mar. 2000).

Proc. of SPIE Vol. 11452 1145237-9
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 14 Dec 2020
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use

