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Revealing the three-component structure of
water with principal component analysis (PCA) of
X-ray spectra†

Zhipeng Jin,a Jiangtao Zhao,b Gang Chen, c Guo Chen,*d Zhenlin Luo*b and
Lei Xu *a

Combining principal component analysis (PCA) of X-ray spectra with MD simulations, we experimentally

reveal the existence of three basic components in water. These components exhibit distinct structures,

densities, and temperature dependencies. Among the three, the two major components correspond to

the low-density liquid (LDL) and the high-density liquid (HDL) predicted by the two-component model,

and the third component exhibits a unique 5-hydrogen-bond configuration with ultra-high local density.

As the temperature increases, the LDL component decreases and the HDL component increases, while

the third component varies non-monotonically with a peak around 20 1C to 30 1C. The 3D structure of

the third component is further illustrated as the uniform distribution of five hydrogen-bonded neighbors

on a spherical surface. Our study reveals experimental evidence for water’s possible three-component

structure, which provides a fundamental basis for understanding water’s special properties and

anomalies.

1 Introduction

As the most common and important liquid on Earth, water is not
typical at all; it exhibits rather special properties and anomalies.
For example, some properties exhibit non-monotonic behavior,
such as the maximum density at 4 1C,1–4 the minimum heat
capacity at 35 1C,5 and the minimum isothermal compressibility
at 46 1C,6,7 which are very different from most other liquids.
These special properties originate from water’s unique structure,
which is still a big mystery under active debate. The main
difficulty lies in the experimental front and the lack of direct
experimental proof which prevents a clear understanding of
water’s structure.

At the theoretical front, several different models and scenarios
have been proposed, including the stability-limit conjecture,8

the second critical point hypothesis,9 the critical-point-free

scenario,10,11 and the singularity-free scenario.12 In particular,
researchers have found that multiple quantities of water seem
to diverge when extrapolated to Tc = �45 1C,7 which is a
signature of the critical point.13 As a result, the second critical
point hypothesis has gained prevailing support.14–20 This
hypothesis proposes a liquid–liquid critical point (LLCP) for
water at Tc =�45 1C: below this the water phase separates into a
low-density liquid (LDL) and high-density liquid (HDL); and
above this water is a mixture of the two (note that the critical
point also requires a pressure much higher than the atmo-
spheric pressure and cannot be realized under normal
conditions20–22). Recent experiments show that water exhibits
a maximum in both isothermal heat capacity14 and
compressibility22 at 1 bar, consistent with the existence of a
LLCP at lower temperatures (P 4 0).

However, it is very difficult to realize the critical point
experimentally, because the predicted critical temperature,
Tc = �45 1C, is far below the freezing temperature of water
and even below the homogeneous nucleation temperature at
�41 1C.23–25 Consequently, water will spontaneously crystallize
far above Tc and it is very difficult to observe LDL and HDL in
their bulk phases or their transition, until a recent experiment
that was performed at very rapid speed and high pressures.26

Although crystallization can be inhibited through strong
confinement,27–29 adding solutes30,31 or some other special
treatment,21,26,32 the results under such special conditions
may not be representative for pure bulk water at normal
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pressure. As a result, it is more practical to numerically probe
the components of water with molecular dynamics (MD)
simulations,19,20,33–36 which however give very different conclu-
sions with different water models. Therefore, an objective and
systematic experimental analysis, which can extract direct and
unambiguous experimental evidence, is currently the most
critical aim in this research field.

2 X-ray diffraction experiment

To address this critical issue, we turn to a powerful mathematical
tool, principal component analysis (PCA). It is a mature and
robust approach for identifying crucial components or dominant
factors from their complex combinations. We apply this powerful
analysis to the X-ray spectra of liquid water at different tempera-
tures (�5 1C to 80 1C), and combine it with numerical simulations
to illustrate the microscopic structure of water. As expected, the
experimental data unambiguously reveals two major components
with LDL-like and HDL-like structures, which convert into each
other as temperature changes. More strikingly, our data further
uncovers a third component, which exhibits distinct structure,
density, and temperature dependency from the other two.
Combining experiment with simulation, our study elucidates
the unique three-component structure of water, and provides a
fundamental basis to understand water’s special properties and
anomalies.

To probe water’s microscopic structure, we perform X-ray
scattering experiments at the BL19U2 station of Shanghai
Synchrotron Radiation Facility (SSRF). Our X-ray beam has a

spot size of 320 � 43 mm2 and the energy of 12.000 � 0.002 keV.
After the incident X-rays interact with the deionized water
sample, the scattered X-ray is collected by a Pilatus 1M area
detector. The schematics of the setup are shown in Fig. 1(a) and
a typical raw scattering image is shown in Fig. 1(b). To max-
imize the measurement range in q, the detector only collects
about one-quarter of the scattered light, as shown in Fig. 1(b).
The temperature of the deionized water is systematically varied
by a thermal stage (Linkam HFSX350) between �5 1C to 80 1C,
and we record the X-ray scattering image after the sample
temperature is stabilized at designated values. The water
temperature is measured in real time, by a Micro-BetaCHIP
Thermistor probe placed adjacent to the incident area (within
0.5 mm). Further experimental details can be found in the ESI.†

After the data processing of image integration, background
subtraction, absorption correction, geometry and polarization
correction (see details in ESI†), we obtain the scattering
intensity curves I(q) under different temperatures, as plotted
in Fig. 1(c). The structure factor S(q) can be further obtained
from I(q) (see details in ESI†), as plotted in Fig. 1(d), which is
consistent with previous measurements.37 Based on these S(q)
curves, we perform the principal component analysis (PCA).

3 Principal component analysis

PCA is a powerful mathematical approach (see Methods) widely
used in various fields, such as statistics, data science, quantitative
finance, neuroscience, and physics.38,39 Analogous to finding the
principal axes of a rigid body, PCA identifies the most critical

Fig. 1 (a) The schematics of the experimental setup. (b) A typical X-ray scattering image. The horizontal and vertical dark regions are gap regions without active
pixels. (c) Scattering intensity I(q) under different temperatures (�5 1C to 80 1C). (d) Structure factor S(q) under different temperatures. (e) Main panel: eigenvalues
from large to small. The first two are significantly larger than the rest. Inset: vector analysis of the first eigenmode. OL

�!
, OH
��!

and HL
�!

represent LDL, HDL, and the

first eigenmode, respectively. OM
��!

represents an actual sample with a fraction of s LDL and (1 � s) HDL. According to vector addition, point M locates on the

straight line of HL
�!

:OM
��! ¼ sOL

�!þ ð1� sÞOH��! ¼ s OL
�!�OH

��!� �
þOH
��!

, which gives OM
��!�OH

��! ¼ s OL
�!�OH

��!� �
and thus HM

��! ¼ sHL
�!

. As s varies with temperature,

point M sweeps through the red segment on HL
�!

and each point on this red segment corresponds to one actual sample we can experimentally measure. (f) The
first and second eigenmodes calculated from S(q) curves. (g) Each S(q) curve measured in (d) is projected onto the first and second eigenmodes, with p1 and p2 the
projection pre-factors. p1 decreases significantly while p2 is quite stable. (h) Zoomed-in plot of p2 shows non-monotonic behavior.
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eigenmodes of the covariance matrix built from different
measurements, and illustrates the data with these critical modes.
For a complex system composed of multiple components, the
eigenmodes of PCA can reveal valuable information from basic
components, and the projections along these eigenmodes can
provide the component weight information. Compared with pre-
vious analysis on water structure,40,41 our PCA approach has the
advantage of being completely objective without any fitting,
systematically combining all data from different measurements,
and thus can provide unambiguous and robust experimental
evidence.

Based on the different S(q) measurements in Fig. 1(d), we
construct the covariance matrix and obtain its eigenvalues and
eigenmodes (see ESI†). Fig. 1(e) main panel shows the eigen-
values arranged from large to small: apparently, the first and
second eigenvalues are significantly larger than the rest, which
are small and at noise level. Thus, most physics in our data can
be represented by the first two eigenmodes, which indicate two
main reasons for water structure evolution under different
temperatures. We will show that the first reason is due to the
mutual conversion between two dominant water components,
and the second reason is related to the third component
of water.

The first eigenvalue accounts for the majority of the total
sum, indicating that the physics is dominated by the first
eigenmode and thus essentially one-dimensional (1D) (note
that the eigenvalues are the variance of raw data projected
along each eigenmode but not the fraction of each component).
This 1D behavior is consistent with a mutual conversion
between two basic components as proven below. Without loss
of generality, the basic components and their superpositions can
be represented by vectors in the eigenmode space. Therefore, we

use two vectors – OH
��!

for HDL and OL
�!

for LDL – to represent the
two basic components of water as shown in the inset of Fig. 1(e).

Linear combinations of OH
��!

and OL
�!

, which represent mixtures of
HDL and LDL, can in general spread in a 2D plane. However, the
mutual conversion means that one changes into another, but
their sum remains as a constant. This constraint eliminates one
degree of freedom and collapses the 2D combinations into a 1D
straight line: assuming that an experimental system contains LDL
with a fraction of s and HDL with a fraction of (1 � s), its vector

representation, OM
��! ¼ sOL

�!þ ð1� sÞOH��!, must lie on the straight

line of vector HL
�!

for an arbitrary s, as shown by the vector analysis
in the inset of Fig. 1(e). As we vary the temperature from �5 1C to

80 1C, the fraction s will change correspondingly and OM
��!

will

sweep across the red segment on HL
�!

. Therefore, if water is indeed
mainly composed of two components, their mutual conversion
should generate 1D behavior with one dominant eigenvalue and
eigenmode, consistent with our observation. Furthermore, this

dominant eigenmode has the physical meaning of vector HL
�!

(after renormalization), which means the difference between LDL

and HDL: HL
�! ¼ OL

�!�OH
��!

. We plot this first eigenmode in

Fig. 1(f) (upper panel) and its physical meaning as vector HL
�!

will
be experimentally confirmed later.

Besides the dominant first eigenvalue, the second eigenvalue
also exceeds the rest by a significant amount, indicating
new physics beyond the two-component picture. The second
eigenmode is plotted in Fig. 1(f) lower panel, which exhibits
more characteristic peaks and valleys than the first mode.
Because the second eigenmode is orthogonal to the first, it must
be independent of the two components’ conversion and
indicates the existence of a third component we will verify later.
We emphasize that despite the discovery of the third compo-
nent, the two-component model does describe the major water
structure, and the third component is a small yet significant
ingredient. Its discovery demonstrates the high sensitivity of our
PCA analysis for picking up small yet significant signals.

To understand the water structure based on the first and
second eigenmodes, we project the measured S(q) curves onto
the two modes with the projection prefactors p1 and p2, as
shown in Fig. 1(g). Later we will show that p1 and p2 correlate to
the various component weights in the actual samples. Clearly,
p1 reduces significantly with T, corresponding to the decrease
of the LDL component as verified later. For the second eigen-
mode, p2 is relatively stable and non-monotonic, suggesting the
distinct behavior of the third component. An enlarged picture
for p2 is plotted in Fig. 1(h), which reveals a peak around 30 1C.
To summarize, PCA reveals intriguing clues from experimental
data; however a complete understanding requires molecular
level information, which will be achieved by combining experi-
mental data with molecular dynamics (MD) simulations.

4 Molecular dynamics simulations and
two-component model

We conduct simulations using multiple popular water models –
SPC/E, TIP3P, TIP4P, TIP4P-Ew and TIP5P – and find that the
TIP4P-Ew model fits our experiment the best and will be used
throughout this work (see more simulation details in ESI†).
A snapshot of 512 water molecules equilibrating at 25 1C is
shown in Fig. 2(a), and we average over 2000 such snapshots to
achieve good statistics. With the locations of every water
molecule obtained from simulations, we plot the radial dis-
tribution function of water molecules, g(rOO), under various
temperatures in Fig. 2(b). For comparison, we also simulate the
LDL-dominant and HDL-dominant samples based on the pre-
vious literature,40,41 and plot them as dashed curves. Due to the
small system size and short time scale, the simulated samples
can reach down to �60 1C without freezing, and clearly the
structure approaches LDL as the temperature lowers. After
Fourier transform, we can further obtain the scattering inten-
sity I(q) and the structure factor S(q) (see ESI† for details), as
plotted in Fig. 2(c) and (d), respectively. Even over the much
broader temperature range explored, the simulations exhibit a
very similar trend as the actual measurements in Fig. 1(c) and
(d). Fig. 2(e) and (f) demonstrate the direct comparison between
simulation and experiment at 4 different temperatures, and the
agreement between experiment and simulation is excellent.
Therefore, the water structures obtained in the simulations
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can be considered as a reliable representation of the actual
samples in the experiment.

Next, we verify the two-component model which is well
established theoretically but has very rare direct experimental
proof.41 Based on previous research,40 we distinguish the high-
density liquid (HDL) and the low-density liquid (LDL) with the
order parameter, z = r2 � r1; for an arbitrary water molecule, r1

is the distance to its furthermost hydrogen-bonded neighbor,
and r2 is the distance to its closest non-hydrogen-bonded
neighbor, as shown in Fig. 3(a). This definition differentiates
LDL and HDL by comparing the hydrogen-bonded neighbors
with the non-hydrogen-bonded ones. For the case of LDL, the
hydrogen-bonded neighbors (typically 4 of them) form the
nearest shell within r1, while the non-hydrogen-bonded neighbors
are far away from this shell, i.e., z4 0 by a significant amount. In
the HDL situation, however, the non-hydrogen-bonded neighbors
are very close to or even enter into, this r1 shell, producing a larger
local density as shown in Fig. 3(a), right panel. These two
components are indeed commonly observed in our simulations,
as shown in Fig. 3(b): the relevant molecules are enlarged and
colored in blue, and the hydrogen bonds are drawn as green long
connections. Clearly, for LDL the closest non-hydrogen-bonded
neighbor is far away from the r1 shell while for HDL it is inside the
r1 shell.

Based on this definition of LDL and HDL, we can find their
fractions at different temperatures in simulations (see ESI†).
We then combine the fraction information from the simulation
with experimental data, and verify the two-component model
experimentally. According to the model, any actual system we

can experimentally measure is a mixture of LDL and HDL:

OM
��! ¼ sOL

�!þ ð1� sÞOH
��! ¼ s OL

�!þOH
��!� �

þOH
��!

, with s and (1 �

s) the fractions of LDL and HDL, and vectors OM
��!

, OL
�!

and OH
��!

representing the actual mixture system, LDL and HDL, respec-

tively (see Fig. 1(e)). According to this vector equation, OM
��!

depends linearly on s and so does the point M coordinate on

HL
�!

. Because the M coordinate on HL
�!

can be represented by
the projection prefactor p1, the two-component model thus
predicts a linear relation between p1 and s. To test this, we plot
s versus p1 in Fig. 3(c) and obtain good linear dependence. As p1
and s are independently obtained from experiment and simula-
tion, this linear relation shows clear evidence for the two-
component model, as well as good agreement between our
experiment and simulation.

We further compare this essential result, i.e., the linear line
in Fig. 3(c), with theory. Because all samples, both in simulation
and experiment, are measured under specific temperatures, T is
thus a hidden variable in Fig. 3(c). Therefore, we can change
variables and plot the straight line of Fig. 3(c) in terms of the
variables s and T, as shown in Fig. 3(d). For comparison, the
theoretical prediction from the two-component model40,42,43 is
also plotted as the dashed curve, which agrees well with our
result. According to this theory, we have the following relation
between the LDL fraction s and the temperature T:

s ¼ 1

1þ e
DE
kBT
�Ds
kB

(1)

Fig. 2 (a) A snapshot of 512 water molecules at 25 1C simulated by the TIP4P-Ew model. We average over 2000 snapshots to obtain the simulation data.
(b) The radial distribution function of oxygen atoms simulated at different temperatures. The LDL and HDL dominant systems are shown by dashed
curves. (c) The simulated scattering intensity I(q) under different conditions. (d) The simulated structure factor S(q) under different conditions. (e and f)
The comparison of I(q) and S(q) between simulation and experiment at 4 different temperatures.
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where DE = ELDL� EHDL and Ds = sLDL� sHDL are the energy and
entropy difference between LDL and HDL, respectively. By fitting
the theoretical dashed curve to our solid curve, we get: DE/kB =
�1238.3 K and Ds/kB = �5.63, which are consistent with the
previous study.41 Apparently, LDL has a lower energy and entropy
than HDL, because LDL typically exhibits four hydrogen bonds
per molecule (3.98 in our simulation) with a relatively-ordered
structure, while HDL contains a mixture of three and four
hydrogen bonds (averaged at 3.79 in our simulation) with a more
disordered structure. As a result, LDL is preferred at low tempera-
tures due to its lower energy, while HDL is preferred at high
temperatures due to its higher entropy. Moreover, the Schottky
temperature43 at which LDL and HDL components have an equal
amount, T (s = 0.5) = DE/Ds = 220.0 K (i.e., �53 1C), is close to the
critical two-phase separation temperature 228.1 K (i.e.,�45 1C), as
we naturally expect. Also the relationship of eqn (1) works nicely in
simulations over a much broader temperature range (�60 1C to
100 1C) than our experiment, as shown in the ESI.†

Besides the theoretical agreement, we further illustrate the
physical meaning of the first eigenmode, as promised earlier.
According to the vector analysis in Fig. 1(e), the first eigenmode

should correspond to the vector HL
�!

(after renormalization), which

is the difference between LDL and HDL: HL
�! ¼ OL

�!�OH
��!

. We
directly test it in q space, by comparing the first eigenmode from
experiment with the difference of LDL and HDL from simulation.
We first numerically construct HDL and LDL dominant systems
under special conditions: the HDL-dominant (97.7%) system is
realized at very high pressure (P = 10 000 bar, T = 250.0 K), and the

LDL-dominant (72.3%) system is achieved at very low pressure and
temperature (P = �2000 bar, T = 200.0 K). Both systems agree well
with previous studies.26,44 Due to the very short time scale of
simulations (10 to 20 ns), the LDL system can remain as liquid
even at very low temperatures. The HDL and LDL dominant
systems are plotted in the top two panels of Fig. 3(e), and the first
eigenmode is plotted in the bottom panel for direct comparison.

Apparently, there are three main features in the bottom panel
(2 peaks and 1 valley), whose locations or characteristic sizes
match nicely with the main features of the top two panels
(2 peaks in LDL and 1 peak in HDL). We then directly subtract
the top two curves, i.e., LDL minus HDL, and compare this
difference against the first eigenmode, as shown in Fig. 3(f).
The main features and trend match very well, confirming the
picture that the first eigenmode corresponds to the difference
between LDL and HDL. Once again, two independent data sets,
the eigenmode from experiment and the LDL minus HDL curve
from simulation, agree well with each other. This provides further
strong experimental evidence for the two-component model.

5 The third component of the three-
component picture of water

More interestingly, our study goes beyond the two-component
picture and reveals the experimental evidence for the third
component. According to our PCA analysis, besides the domi-
nant first eigenvalue, the second eigenvalue is also significantly

Fig. 3 (a) Schematics illustrating LDL and HDL. Molecules 1 to 4 are hydrogen bonded to 0 while 5 is not. r1 is the distance to the furthermost hydrogen-bonded
molecule, and r2 is the distance to the closest non-hydrogen-bonded molecule. Following previous research,40 the order parameter is defined as: z = r2 � r1. For
LDL, r2 is well beyond the r1 shell, while for HDL r2 is very close to or even enters the r1 shell. (b) Typical LDL and HDL components observed in our simulation. The
relevant molecules are enlarged and shown in blue, and the hydrogen bonds are indicated by the green connections. (c) LDL fraction has a linear relation with the
projection pre-factor p1. (d) Our result agrees well with the theoretical fitting. (e) Top to bottom panels show the HDL system’s S(q), the LDL system’s S(q) and the
first eigenmode. The locations of the three main features in the eigenmode agree well with the HDL and LDL features: the two peaks correspond to the two LDL
peaks, and the valley corresponds to the HDL peak. (f) The first eigenmode agrees well with the curve obtained by the LDL curve minus the HDL curve.
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larger than the rest and contains important physical informa-
tion (see Fig. 1(e)). Because different PCA modes are orthogonal
to each other, the second mode must be independent of
the first, and reveals valuable information beyond the two-
component picture. A previous study has uncovered some
clues about the existence of a third component,45 and a
pioneering numerical study has proposed a possible candidate
with five hydrogen bonds (5-H-bond).46 We now reveal direct
experimental evidence for its existence and illustrate the 3D
structure.

We again illustrate the third component with independent
data sets from experiment and simulation: the projection
prefactors along the second eigenmode, p2, are obtained
experimentally, and the fractions of 5-H-bond component
under different temperatures, f3, are obtained numerically.
The two sets of data are plotted together in the Fig. 4(a) inset
and their profiles resemble each other. Moreover, further
analysis (shown later in Fig. 5(h) and Methods) indicates that
p2 linearly correlates to the fractions of both the first compo-
nent f1 (i.e., LDL fraction) and the third component f3 (i.e., 5-H-
bond fraction): p2 p 20.63 � f3 � f1. In the main panel of
Fig. 4(a) we plot them together and observe an almost precise
match. Such excellent agreement unambiguously proves that
the third component is indeed the 5-H-bond structure.

To gain even more evidence, we compare the characteristic
sizes in q space. Due to the lack of knowledge on the formation
conditions, we cannot construct a system dominated by the
5-H-bond component, like the LDL or HDL dominant system.
However, we can extract the 5-H-bond information from normal
systems: we only pick out the molecules surrounded by five
hydrogen bonds, and set such molecules as the origin to
calculate the radial distribution function, g5H(r). We then Four-
ier transform g5H(r) to get S5H(q), and compare it with the
second eigenmode from the experiment, as shown in Fig. 4(b).
Clearly, there are two pronounced peaks in the second eigen-
mode curve at q = 2.06 Å�1 and q = 2.88 Å�1, which correspond
exactly to the isosbestic point45 and the main peak of the S5H(q)
curves as shown in the upper panel. This match once again
confirms the 5-H-bond structure as the third component.
In addition to peaks, there are also three major valleys in the
second eigenmode, which come from LDL and HDL as they are
close to the three main peaks in LDL and HDL (see Fig. 3(e))
(although the second eigenmode is orthogonal to the difference
of LDL and HDL, it still contains features from LDL and HDL).

Next we illustrate the 3D structure of the third component,
i.e., how do the five hydrogen bonds locate spatially. Because
the five hydrogen bonds have similar lengths, we can approx-
imate the five hydrogen-bonded molecules as locating on a

Fig. 4 (a) Inset: The 5-H-bond fraction f3 from simulation and the projection pre-factor p2 from experiment, are both non-monotonic and resemble
each other. Main panel: the non-monotonic p2 matches 20.63 � f3 � f1. (b) The main peaks in the second eigenmode (bottom panel) at q = 2.06 Å�1 and
q = 2.88 Å�1 correspond exactly to the isosbestic point and the main peak of S5H(q) (top panel). S5H(q) is the structure factor calculated from 5-H-bond
molecules. (c) Left panel: Schematics showing the uniform distribution of five hydrogen-bonded molecules on a spherical surface, with two molecules at
the north and south poles, and three on the equator with 1201 angle between them. Right panel, a typical 5-H-bond structure in an actual simulation
exhibits a very similar configuration as the left panel, differing only by some thermal distortions. (d) The distribution of angles between 5-H-bond oxygen
atoms, P(q). The solid curve from our uniform distribution model plus random fluctuations (mimicking thermal fluctuations) agrees well with the actual
simulations at different temperatures (dashed curves). (e) Main panel: the fractions of three components at various T. Inset: A snapshot at 293 K showing a
perfect mix of three components at molecular level. Orange: LDL, cyan: HDL, purple: 5H-bond. (f) The densities of the three components and their
combined density. The 5-H-bond component is significantly denser than both HDL and LDL. The combined density peaks at 274 K, close to the density
maximum of water at 277 K.
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spherical surface. We consider the most uniform distribution
under which the molecules are separated to the largest degree.
As shown in Fig. 4(c) left panel: two molecules locate on the
north and south poles respectively, and three on the equator
with a 1201 angle between their connections. Indeed, typical
5-H-bond structures in our simulations exhibit very similar
configurations as this assumption (except with some thermal
fluctuations), as shown in the right panel of Fig. 4(c).

To statistically verify this most uniform distribution model,
we collect a large amount of 5-H-bond molecules from actual
simulations, connect their oxygen atoms, and statistically cal-
culate the distribution of angles between these connections,
P(q). For comparison, we also calculate P(q) generated from our
uniform distribution model. In the ideal situation, there are
only three possible angles: 901 (60%), 1201 (30%), and 1801
(10%) (left panel of Fig. 4(c)), which can however broaden into a
continuous distribution after random perturbations that mimic
thermal fluctuations (see ESI†). The curves from the actual
simulation (dashed) and our model calculation (solid) are
compared in Fig. 4(d) and excellent agreement is observed.
This agreement confirms that the 3D structure of the third
component is the most uniform distribution of five hydrogen-
bonded molecules around the center, as demonstrated in
Fig. 4(c).

To illustrate the overall three-component picture, we plot
their individual fractions in Fig. 4(e) which add up to unity.
As temperature increases, LDL decreases and HDL increases
significantly, as a result of their mutual conversion. However,
the third component with the 5-H-bond is much more stable,
with distinct non-monotonic behavior peaking around 300 K.
This indicates a fundamentally different thermal response
of the third component. In addition, the fraction of the third

component is around 5% to 7%, which is significant, although
the other two components are more important. Correspondingly,
the third component causes a few percent modifications to the
two-component model and the theoretical predictions of eqn (1),
which are shown in the ESI.† The inset shows a snapshot at
293 K with perfect mixing of three components at the molecular
level. Our study thus provides robust evidence for the two-
component model, and at the same time reveals valuable
information for the third component.

We further calculate the densities of the three components
with Voronoi cells obtained from each molecule, as shown in
Fig. 4(f) (see ESI† for details). Interestingly, the third compo-
nent exhibits ultrahigh density that is significantly higher than
both HDL and LDL, agreeing with the previous study.46 When
the three densities are combined according to their fractions,
1

r
¼ f1

r1
þ f2

r2
þ f3

r3
, we obtain the bulk water density r from the

molecular level. As shown by the connected data curve in
Fig. 4(f), r has a peak at 274 K, which is close to the maximum
water density at 277 K. Therefore, our three-component picture
at the microscopic level agrees with the macroscopic density
anomaly of bulk water.

6 Comparison with the three-alcohol
system

To ensure that our PCA method reliably reveals the three
components of water, and more importantly to establish it as
a general approach to distinguish the components of various
system mixtures, we precisely design a well-defined three-
component system and check whether it reproduces all the

Fig. 5 (a) A snapshot of 512 alcohol molecules (5% of the total system) at 25 1C simulated with GROMOS 54A7 force field. The cyan, orange and purple
represent CH4O (methanol), C2H6O (ethanol) and C3H8O (1-propanol), respectively. (b) Several typical scattering intensity curves, I(q), of the system with
different fractions of the three alcohols. Inset: I(q) curves for the three pure alcohols. (c) In a mixture, the linear superposition of three pure alcohols’ I(q)
based on their fractions agree well with the mixture’s actual I(q). (d) The eigenvalues arranged from large to small. (e) Bottom panel: The 1st eigenmode
from PCA analysis on I(q). Middle panel: pure ethanol’s I(q). Top panel: pure methanol’s I(q).(f) The comparison between the difference of the two
dominant components and the 1st eigenmode. They agree well with each other. (g) p1 has a nice linear relationship with ethanol’s fraction f1. (h) Inset:
Non-monotonic profiles of p2 and f3 resemble each other, indicating their close correlation. Main panel: p2 p 20.63 � f3 � f1 is verified well.
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PCA results of water. We construct a distinct system with three
types of alcohol: C2H6O (ethanol, 0.789 g mL�1), CH4 O (metha-
nol, 0.792 g mL�1), and C3H8O (1-propanol, 0.804 g mL�1),
which mimic water’s LDL, HDL and 5-H-bond structures, respec-
tively, according to their low-to-high densities. Previously our
water sample i was measured at 18 different temperatures and
thus 18 combinations of its three component fractions were
obtained in Fig. 4(e); correspondingly, 18 mixtures of the three
alcohols with identical molar fractions are numerically con-
structed. These precisely-designed mixtures are then analyzed
with PCA and compared against water’s results. In these MD
simulations, 10 000 molecules in total are put inside a cubic box,
and the mixtures reach equilibrium at 25 1C and 1 bar. One
example is shown in Fig. 5(a), which shows perfect mixing of the
three alcohols just like water’s three components. Several typical
scattering intensity curves, I(q), are shown in Fig. 5(b) and the
inset shows the I(q) curves of the three pure alcohols.

First we use this system to address a fundamental open
issue: the vector analysis in Fig. 1(e) assumes the mixture’s
signal as a linear superposition of the pure components’
signals, which has not been verified. With the three-alcohol
system whose components’ fractions are precisely known, we
check this fundamental assumption directly. For any mixture
we can linearly add up its three pure components’ I(q) based on
their fractions and compare the sum with the mixture’s actual
I(q), as shown in Fig. 5(c): the excellent match in several typical
samples unambiguously proves this basic linear assumption as
a good approximation. Thus all our previous linear analyses are
fundamentally self-consistent.

Next we perform PCA analysis on the three-alcohol system.
We directly analyze the I(q) instead of S(q) curves because the
three alcohols have different molecular form factors and thus
the mixtures only have I(q) but not S(q). In water we PCA analyze
S(q) curves because of the convenient comparison with previous
studies that frequently use S(q); however the PCA analysis on
I(q) is more general and valid for both water and other mixture
systems.49 The analysis on water’s I(q) and S(q) also give the
same results (see ESI†) and thus they are essentially equivalent.

All the water’s PCA results are reproduced in the three-
alcohol system: there is a dominant first eigenmode correlated
to the fraction variations between the two major components,
CH4O and C2H6O, and a second eigenmode correlated to the
third component, C3H8O (see Fig. 5(d) for eigenvalues). In
Fig. 5(e) bottom panel, the first eigenmode exhibits two peaks
and one valley which correspond to the main features in C2H6O
(middle) and CH4O (top), respectively, and in Fig. 5(f) the first
mode agrees well with the two curves’ difference, C2H6O–CH4O
(similar to LDL–HDL in Fig. 3(e) and (f)). For mode projections,
the projection pre-factor on the first mode, p1, again exhibits
excellent linear dependence with the first component’s fraction
f1, as shown in Fig. 5(g). For the second mode, p2 also has a
similar non-monotonic profile as the third component’s frac-
tion f3, indicating their close correlation (see Fig. 5(h) inset).
Theoretical analysis further finds that p2 directly correlates to
the linear combination of f3 and f1: p2 p 20.63 � f3 � f1

(see Methods), and the two data sets match each other very well

as shown in Fig. 5(h). Moreover, this exact expression also
works well in the water system, as shown in Fig. 4(a). One
identical expression, p2 p 20.63 � f3 � f1, works simulta-
neously in both the three-alcohol mixture and the water system,
unambiguously proving the three-component picture of water
and the universal validity of our PCA method.

7 A general model

As our PCA analysis on water and the three-alcohol simulations
reveal reproducible results for a mixture of three components,
we would like to test these results in a more general system.
Because in general many features are peaks or valleys which can
be approximated by Gaussian peaks, without loss of generality,
we use Gaussian peaks or their superpositions as basic compo-
nents, and then add three such components together to form a
three-component mixture. A few types of basic components are
shown in Fig. 6(a), which are either Gaussian peaks (type 1) or
their superpositions (type 2 and 3). To compare with water, we
use the identical fractions as water’s three components shown
in Fig. 4(e), and construct general three-component mixtures
with these Gaussian peaks. Applying the PCA method to these
mixture systems, we can reproduce all results from the water
system. First, there are only two large eigenvalues as shown in
Fig. 6(b). This indicates that there are two main reasons that
cause the system evolution. The first reason is due to the
mutual conversion between the two dominant components,
as proved by the nice linear relationship between p1 and f1 in
Fig. 6(c), and the overlap of the first eigenmode and the
difference between the two dominant components in
Fig. 6(d). The second reason is related to the variation in the
third component revealed by the second eigenmode. Once
again, we observe a nice match between p2 and the linear
combination of f3 and f1 in Fig. 6(e), which is similar to water
and three-alcohol systems. Moreover, the pre-factor of f3 is also
very close to water and three-alcohol systems, regardless of the
very different basic component shapes. To verify this further,
we change the Gaussian peaks’ height and width randomly for
each component type in Fig. 6(a) and calculate the corres-
ponding pre-factors of f3. We find that all the pre-factors are
around 21, as shown in Fig. 6(f), which agrees well with water’s
value of 20.63. Therefore, the quantitative agreement of this
pre-factor in water, three-alcohol system, and the Gaussian
peak system provides unambiguous evidence that our PCA
analysis is robust and universal.

8 Conclusions

To conclude, in this work we apply PCA analysis to X-ray spectra,
and obtain two significant eigenmodes that correspond to three
components of water. The dominant first mode corresponds to
the conversion between two major components, LDL and HDL,
and the second eigenmode corresponds to a third component
with five hydrogen bonds and ultra-high density. The 5-H-bond
structure makes a separate third component as manifested by its
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unique non-monotonic response with the external condition,
i.e., temperature in our experiment, which is distinct from the
monotonic behavior of LDL and HDL. The experimental evi-
dence for the third component makes a breakthrough beyond
the prevailing two-component picture, and opens new research
directions such as a possible new phase separation for this third
component as well as its special properties and interactions with
the other two components. The PCA analysis also demonstrates
itself as a powerful tool for identifying important components in
complex systems.

Methods

PCA is a powerful mathematical tool for analyzing data with
intrinsic connections. The main idea of PCA is to reduce data
dimensionality by projecting each data point onto only the first
few principal components or eigenmodes and obtain lower-
dimensional data while preserving as much of the data’s variation
information as possible. Therefore, the eigenmodes in fact repre-
sent the directions towards which the data set vary most substan-
tially. For a system with three different components such as water,
the main reason for the system variation is the mutual conversion
between the two major components, LDL and HDL. The second
reason for the system variation is related to the fraction change in
the third component, which has a fraction less than 10%. To
simplify the question theoretically, we can approximate the

mixture’s signal as a linear combination of three different compo-
nents’ (see Fig. 5(c)), and the mixture’s signal change is due to the
fraction variations of these components. In terms of vector expres-
sion, the signal of an arbitrary mixture sample i can be expressed

as: Ii
!ðqÞ ¼ f1i a!þ f2i b

!þ f3i g!, with ~a, ~b, g! the signals of pure
components and f’s their corresponding fractions. In the water
system, LDL and HDL dominate and thus f1i + f2i E 1 and f3i { 1.
To get the relation between projection pre-factors and component
fractions, we can project each sample curve to the eigenmodes,

that is pij =
-

Ii(q)�-ej, where pij is the projection pre-factor of the ith
sample onto the jth eigenmode. According to previous analysis in
the Fig. 1(e) inset, the 1st eigenmode can be approximated as

a!� b
!� �

and thus its unit vector can be approximated as:

e1
!� a!� b

!� �.
a!� b
!���
���. Next we derive the linear relationship

between p1 and f1:

pi1 ¼ Ii
!ðqÞ� e1!� f1i a

!þf2i b
!þf3i g!

� �
� a!� b

!� �.
a!� b
!���
���

¼ a!� b
!���
���f1iþf3i g!� b

!� �
� a!� b

!� �.
a!� b
!���
���

þ b
!� a!� b

!� �.
a!� b
!���
���

¼ a!� b
!���
���f1iþC1þC2

(2)

Fig. 6 (a) Three different types of the basic components used to generate the data set. Top panel: all three components are single Gaussian functions. Middle
panel: all the three components are the sum of two Gaussian functions. Bottom panel: the first component is one Gaussian function, the second component is the
sum of two Gaussian functions, and the third component is the sum of three Gaussian functions. (b) The eigenvalues of the three different data sets. Obviously,
there are only two large eigenvalues. (c) All three data sets have a linear relationship between p1 and f1. (d) The difference between two dominant components
overlap well with the 1st eigenmode for all three tested systems. (e) The linear combination of f1 and f3 reproduce the same profile as p2, as predicted by eqn (3) in
the section Methods, and the pre-factors of f3 are around 21. (f) For more randomly generated data sets, the pre-factor of f3 is also around 21.
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The latter two terms do not influence the linear relationship
because f3i { 1 and the last term is a constant. This linear
relation is confirmed well by our experiment and simulation.

We further derive the relationship between p2 and f3, by
projecting the data curve onto the 2nd eigenmode:

pi2 ¼ Ii
!ðqÞ � e2!¼ f1i a

!þ f2i b
!þ f3i g

!� �
� e2!

¼ a!� b
!� �
� e2!f1i þ g!� b

!� �
� e2!f3i þ b

!� e2!

¼
g!� b
!� �
� e2!

b
!� a!
� �

� e2!
f3i � f1i

2
4

3
5C þ C0

(3)

Here C and C0 are non-important constants and we only focus
on the terms in the square brackets. Because all eigenmodes
are orthogonal to each other, i.e., e1

!� e2!¼ 0, and

e1
!� a!� b

!� �.
a!� b
!���
���, then the denominator part of the

pre-factor of f3i, b
!� a!
� �

� e2!, is close to zero, resulting in this

pre-factor being much larger than 1. Thus p2’s behavior will
strongly depend on f3 due to this large pre-factor, consistent
with our experiment and simulation results in the Fig. 4(a) and
5(h) insets. Moreover, this pre-factor is a universal constant in
both the water system and three-alcohol system, which gives a
universal relation: p2 p 20.63 � f3 � f1 in both systems. This
result is confirmed by the main panels of Fig. 4(a) and 5(h).

To test the robustness of our PCA approach even further, we
theoretically construct three-component systems with different
Gaussian peaks and their superpositions, and obtain the same
results as previous water and three-alcohol systems, as shown
in Fig. S11 (ESI†). All these tests unambiguously indicate that
the PCA analysis is robust and universal. Therefore, PCA’s
conclusion that water is a mixture of three components, and
their fractions vary with temperature, is reliable and robust,
which should help to settle the long-time debate of water
structure in the literature.47,48
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