

THE CHINESE UNIVERSITY OF HONG KONG Department of Physics COLLOQUIUM

Quantum Optics with Superconducting Artificial Atoms in One Dimensional Space

by

Professor Io Chun HOI (許耀銓教授) Department of Physics National Tsing Hua University, Taiwan

Date: June 21, 2021 (Monday) Time: 1:30 - 2:30 p.m. Join ZOOM Meeting: <u>https://bit.ly/3wHuPgK</u>

Abstract

Artificial atoms made from superconducting circuits can be strongly coupled to propagating microwave photons. In this talk, I will address advances on quantum optics with superconducting artificial atoms in one dimensional (1D) space. In the first sets of experiments, we embed a transmon in a transmission line. When driving the qubit strongly on resonance such that a Mollow triplet appears, we observe a few percent amplitude gain for a weak probe at frequencies in-between the triplet. This amplification is not due to population inversion, but instead results from a four-photon process that converts energy from the strong drive to the weak probe [1]. In the second sets of experiment, we embed a transmon at a distance from the end (mirror) of a transmission line. By tuning the wavelength of the atom, we effectively change the normalized distance between atom and mirror, allowing us to effectively move the atom from a node to an antinode of the vacuum fluctuations. We probe the strength of vacuum fluctuations by measuring spontaneous emission line terminated by a mirror, which suppresses decay. We measure a collective Lamb shift reaching 0.8% of the qubit transition frequency and exceeding the transition linewidth [3].

[1] P. Y. Wen et al. Physical Review Letters 120, 063603 (2018)

- [2] I.-C. Hoi et al. Nature Physics 11, 1045 (2015)
- [3] P. Y. Wen et al. Physical Review Letters 123, 233602 (2019)