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1(a). (For the tutorial on 6 Oct) Show (without use of ratio test) that

lim
n→∞

n!

nn
= 0

Hint: If 2K < n then

n!

nn
<
K(K − 1) · · · 3 · 2 · 1

n · n · · ·n · n
<

(
1

2

)K
Proof. If 2K < n, then

n!

nn
=
n(n− 1) · · · (2K + 1)

nn−2K
· 2K(2K − 1)(2K − 2) · · · 2 · 1

n2K

<
2K(2K − 1)(2K − 2) · · · 2 · 1

n2K

=
2K(2K − 1) · · · (K + 1)

nK
· K(K − 1)(K − 2) · · · 2 · 1

nK

<
K(K − 1)(K − 2) · · · 2 · 1

nK

<
1

2
· 1

2
· · · 1

2

=

(
1

2

)K

Let ε > 0. Using the fact that limk→∞
(
1
2

)k
= 0, there exists N ∈ N such that for

all k ≥ N , (
1

2

)k
< ε

In particular, (
1

2

)N
< ε

Now for n > 2N , we have, with K replaced by N , that

n!

nn
<

(
1

2

)N
< ε

Hence

lim
n→∞

n!

nn
= 0



2

1(b). Let b > 0. Show that bn << n! in the sense that

lim
n→∞

bn

n!
= 0

Proof. We will apply the ratio test. If an := bn

n!
> 0, then

lim
n→∞

an+1

an
= lim

n→∞

bn+1

(n+1)!

bn

n!

= lim
n→∞

b

n+ 1
= 0

Hence bn

n!
converges to 0.

2(a). Show that

lim
n→∞

n
1
n = 1.

Proof. Let ε > 0. Consider the inequality

|n
1
n − 1| < ε

which, by algebraic manipulation, splits into two inequalities which must be satisfied
simultaneously:

n > (1− ε)n (1)

n < (1 + ε)n (2)

Here (1) is trivial, since (1− ε)n < 1 ≤ n.

Next we consider (2): By binomial theorem, we have:

(1 + ε)n =
n∑
k=0

(
n

k

)
εk ≥

(
n

2

)
ε2 =

n(n− 1)

2
ε2,

if n > 2.

Hence we choose N > 1 + 2
ε2

by Archimedean Property. By our choice of N , we
have: for n ≥ N ,

n(n− 1)

2
ε2 ≥ n(N − 1)

2
ε2 >

n[(1 + 2
ε2

)− 1]

2
ε2 = n,

which, combined with the above estimate, shows that for n ≥ N ,

n < (1 + ε)n

Combining (1)(2) we have that for n ≥ N ,

|n
1
n − 1| < ε

Hence
lim
n→∞

n
1
n = 1.
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3. (Together with the tutorial)

Definition 1. Let (xn) be any sequence of real numbers. We define its partial sum

Sn :=
n∑
k=1

xk,

and then the average of it by

An :=
Sn
n
.

(a) Show that if limn→∞ xn = x ∈ R, then

lim
n→∞

An = x.

(b) (Tutorial Question)Show that the converse of (a) is not true by constructing a
real sequence an whose average converges to a finite limit l ∈ R but an itself
diverges.

(a) Proof. For simplicity of notations, we may first assume that x = 0.

Let ε > 0. Since xn converges to x = 0, there is N1 ∈ N such that for n ≥ N1,
|xn| < ε

2
.

By Archimedean Property, let N2 ∈ N such that N2 >
2|SN1

|
ε

. Then for n ≥ N2,
we have:

∣∣∣∣x1 + x2 + · · ·+ xn
n

∣∣∣∣ =
1

n
|x1 + · · ·+ xN1 + xN1+1 + · · ·+ xn|

≤ 1

n
(|x1 + · · ·+ xN1|+ |xN1+1|+ · · ·+ |xn||)

≤ 1

n

(
|SN1|+ (n−N1)

ε

2

)
≤ |SN1|

n
+
ε

2

<
ε

2
+
ε

2
= ε

This proves the case when x = 0.

Now we consider the general case. Let (xn) → x ∈ R. Define yn := xn − x,
then yn → 0. Applying the above result to yn, we see that

lim
n→∞

y1 + y2 + · · ·+ yn
n

= 0

But
y1 + y2 + · · ·+ yn

n
=
x1 − x+ x2 − x+ · · ·+ xn − x

n
=
x1 + x2 + · · ·+ xn

n
−x.

Hence by computation rules of limits, we have:

lim
n→∞

x1 + x2 + · · ·+ xn
n

= lim
n→∞

y1 + y2 + · · ·+ yn
n

+ x = x.
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(b) Let (xn) be defined by xn := (−1)n. Then (xn) diverges, but its average is
computed to be:

An :=
x1 + x2 + · · ·+ xn

n
=

(−1)n − 1

2n

Noting that

− 1

n
≤ An ≤ 0,

By squeeze law, we have limn→∞An = 0.


