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Homework 3 Suggested Solutions to Starred Questions

1(a). (For the tutorial on 6 Oct) Show (without use of ratio test) that

Hint: If 2K < n then
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Let € > 0. Using the fact that limy_, (%)k =
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Now for n > 2N, we have, with K replaced by N, that

0, there exists N € N such that for

In particular,

Hence



1(b). Let b > 0. Show that b™ << n! in the sense that

Proof. We will apply the ratio test. If a,, := % > 0, then
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Hence % converges to 0. O
2(a). Show that

lim nr» = 1.
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Proof. Let € > 0. Consider the inequality

1
|nm —1] <€

which, by algebraic manipulation, splits into two inequalities which must be satisfied

simultaneously:
n>(1l—¢" (1)
n<(l+e" (2)

Here (1) is trivial, since (1 —¢€)” < 1 < n.

Next we consider (2): By binomial theorem, we have:

k=0
if n > 2.

Hence we choose N > 1 + 6% by Archimedean Property. By our choice of N, we
have: forn > N,
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which, combined with the above estimate, shows that for n > N,
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Combining (1)(2) we have that for n > N,
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Hence
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3. (Together with the tutorial)

Definition 1. Let (z,,) be any sequence of real numbers. We define its partial sum

n
Sp 1= E Lk,
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and then the average of it by

(a)

(b)

(a)

Show that if lim,,_,o, z, = ¢ € R, then

lim A, = z.
n—0o0

(Tutorial Question)Show that the converse of (a) is not true by constructing a
real sequence a, whose average converges to a finite limit [ € R but a,, itself
diverges.

Proof. For simplicity of notations, we may first assume that x = 0.
Let € > 0. Since x,, converges to x = 0, there is N; € N such that for n > Ny,
lzn| < 5.

By Archimedean Property, let Ny € N such that Ny > @ Then for n > No,
we have:
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This proves the case when x = 0.
Now we consider the general case. Let (z,) — x € R. Define y,, := z, — z,
then y,, — 0. Applying the above result to y,, we see that
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Hence by computation rules of limits, we have:
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lim = lim +x=u=x.
n—00 n n—o0 n



(b) Let (x,) be defined by z, := (—=1)". Then (z,) diverges, but its average is
computed to be:
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Noting that
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By squeeze law, we have lim,,_,,, A, = 0.



