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Homework 1 Suggested Solutions to Starred Questions

1.(a) a-0=0.

Proof.

a-0=a-(0+0)
=a-0+a-0

(definition of 0)

(distributive law)

Adding —(a - 0) on both sides on the left (or right if you like), we have:

—(a-0)+a-0=—(a-0)+(a-0+a-0)

—(a-0)+a-0=[—(a-0)+a-0]+a-0 (associativity of addition)
0=04+a-0 (definition of additive inverse)
0=a-0 (definition of 0)

Proof. We will use the fact that additive inverses are unique in the following sense:

Let a € R. Suppose there is some real number b such that

then b = (—a), the additive inverse of a.

a+b=0bb+a=0,

Now by the above, the definition of —a and commutativity of addition, it suffices

to show that

which is done as follows:
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2(a)

Show that |x — a| < € if and only if
a—e<zr<a-te

Remark: We can assume that € > 0.

Proof. “ =" Suppose |x — a| < € (Thus € > 0).
Recall that

r—a, ifr>a
|z —al = .
a—uwx, ifr<a
Hence we have: (z >aand x —a <¢€)or (x <aand —z+a <€)
By calculation, this gives: (a <z <a+¢€)or (a —e<z <a)
Hence we have a —e <z < a+e.

“<=" Suppose a — € < x < a+ € (Thus € > 0). Then adding —a on both sides,

—e<xr—a<e.

Hence
(—e<zr—a<eandrz—a>0)or (—e<zx—a<eand x—a <0),
namely
(x—a<eandr—a>0)or (—z+a<eand z—a<0).
Then,
(Jlt —a| <eand z —a >0) or (Jr —a| < eand z —a < 0),
and hence

|z —al <e.

]

Let A be a nonempty subset of real numbers and [ € R. State the definition and
the negation for the following:

{ is a lower bound of A.
Solution:

Definiton: Let A be a nonempty subset of real numbers and [ € R. We say [ is a
lower bound of A if for each a € A, we have a > .

Negation: Let A be a nonempty subset of real numbers and [ € R. We say [ is
NOT a lower bound of A if there exists a € A such that a < [.

Let (x,), (y,) be sequences of real numbers converging to z,y € R respectively.
Show that
lim (z, +y,) =z +y.
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Proof. Let € > 0. Since z,, converges to x € R, there exists N; € N such that for

any n > Np, we have
€
|x, — 2| < 3

Similarly, since y,, converges to y € R, there exists Ny € N such that for any n > Ny,
we have .
5.
We take N = max{N;, No}. For n > N, both inequalities above are satisfied, thus

by triangle inequality,

‘yn _y’ <

€

2

€
[0 +yn — 2 =yl < fon —2l+ g -yl < g+ 5 =¢
Hence (z, + y,) converges to x + y.

Remark: The numbers § are chosen so as to make the final sum add to €, which

is what we want ultimately. Similarly, if we had 3 or more, say, m such inequalities
which is needed to sum to €, since € is arbitrary, we would then take each number

in the inequalities as €/3, €¢/m, etc. O



