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Topics  
• Language of Differentials   
• By Parts 
• Integration by Substitution/Trig. Sub./t-substitution (optional) 
• Partial Fraction 
• Fundamental Theorem of Calculus 

(The red-colored items have not been covered yet) 
 
Introduction 
The goal now is to find systematic methods to solve (*) 𝐹𝐹′(𝑥𝑥) = 𝑓𝑓(𝑥𝑥) or 
equivalently, 𝐹𝐹(𝑥𝑥) = ∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥 (**) 
 
The equivalence of (*) and (**) comes from the following Language of Differentials. 
 
As mentioned above, for any differentiable function 𝑢𝑢(𝑥𝑥)   one can “formally” 
define 

𝑑𝑑𝑢𝑢(𝑥𝑥) = 𝑢𝑢′(𝑥𝑥)𝑑𝑑𝑥𝑥 
 

Some Examples of Differentials 
1) 

𝑑𝑑𝑥𝑥𝑛𝑛 = 𝑛𝑛𝑥𝑥𝑛𝑛−1𝑑𝑑𝑥𝑥 

2) 𝑑𝑑 �sin(4𝑥𝑥)
𝑥𝑥

� = �
𝑥𝑥�𝑑𝑑sin(4𝑥𝑥)

𝑑𝑑𝑥𝑥 �−sin(4𝑥𝑥)�𝑑𝑑𝑥𝑥𝑑𝑑𝑥𝑥 �

𝑥𝑥2
�𝑑𝑑𝑥𝑥 = �4𝑥𝑥 cos4𝑥𝑥−sin4𝑥𝑥

𝑥𝑥2
� 𝑑𝑑𝑥𝑥 

 
General Rules for Differentials (we omit the variable in the functions for simplicity) 
𝑑𝑑(𝑓𝑓 + 𝑔𝑔) = 𝑑𝑑𝑓𝑓 + 𝑑𝑑𝑔𝑔 
𝑑𝑑(𝑘𝑘𝑓𝑓) = 𝑘𝑘𝑑𝑑𝑓𝑓, 𝑘𝑘 is a constant 
𝑑𝑑(𝑓𝑓𝑔𝑔) = 𝑓𝑓𝑑𝑑𝑔𝑔 + 𝑔𝑔𝑑𝑑𝑓𝑓 

𝑑𝑑 �
𝑓𝑓
𝑔𝑔
� =

𝑔𝑔𝑑𝑑𝑓𝑓 − 𝑓𝑓𝑑𝑑𝑔𝑔
𝑔𝑔2

 

etc. 
 
Using this “language of differentials” it’s quite easy to write down some “methods” 
to compute indefinite integrals. 
 



Method of Integration by Parts 
Some of you might have notice that we haven’t discussed the rule for finding the 
“indefinite integrals of (product) of two functions”. Why? The reason is because it is 
quite involved. 
 
The rule is known as “Integration by parts” which is (in most concise writing): 

∫ 𝑓𝑓𝑑𝑑𝑔𝑔 = 𝑓𝑓𝑔𝑔 − ∫ 𝑔𝑔𝑑𝑑𝑓𝑓 
 
or ∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑔𝑔(𝑥𝑥) = 𝑓𝑓(𝑥𝑥)𝑔𝑔(𝑥𝑥) − ∫ 𝑔𝑔(𝑥𝑥)𝑑𝑑𝑓𝑓(𝑥𝑥), or ∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑔𝑔(𝑥𝑥) + 𝑔𝑔(𝑥𝑥)𝑑𝑑𝑓𝑓(𝑥𝑥) =
𝑓𝑓(𝑥𝑥)𝑔𝑔(𝑥𝑥) , or ∫ 𝑓𝑓(𝑥𝑥)𝑔𝑔′(𝑥𝑥)𝑑𝑑𝑥𝑥 + 𝑔𝑔(𝑥𝑥)𝑓𝑓′(𝑥𝑥)𝑑𝑑𝑥𝑥 = 𝑓𝑓(𝑥𝑥)𝑔𝑔(𝑥𝑥) . 
 
Examples on how to apply Integration by parts 
1) Find ∫ 𝑥𝑥𝑒𝑒𝑥𝑥𝑑𝑑𝑥𝑥. 
The idea is to “read” this as ∫ 𝑓𝑓𝑑𝑑𝑔𝑔. Which function can we choose for 𝑓𝑓(𝑥𝑥), for 
𝑑𝑑𝑔𝑔(𝑥𝑥)? 
Many choices: (Choice 1) 𝑓𝑓(𝑥𝑥) = 𝑥𝑥, 𝑔𝑔′(𝑥𝑥)𝑑𝑑𝑥𝑥 = 𝑒𝑒𝑥𝑥𝑑𝑑𝑥𝑥 (or 𝑑𝑑𝑔𝑔(𝑥𝑥) = 𝑑𝑑𝑒𝑒𝑥𝑥). 
  
This choice gives ∫ 𝑥𝑥𝑒𝑒𝑥𝑥𝑑𝑑𝑥𝑥 = 𝑥𝑥𝑒𝑒𝑥𝑥 − ∫ 𝑒𝑒𝑥𝑥𝑑𝑑𝑥𝑥 = 𝑥𝑥𝑒𝑒𝑥𝑥 − 𝑒𝑒𝑥𝑥 + 𝐶𝐶 
Question: Try (Choice 2) 𝑓𝑓(𝑥𝑥) = 𝑒𝑒𝑥𝑥, 𝑔𝑔′(𝑥𝑥)𝑑𝑑𝑥𝑥 = 𝑥𝑥𝑑𝑑𝑥𝑥.  What would this choice lead 
to? 
 
2) Find 𝐼𝐼 = ∫ 𝑒𝑒𝑥𝑥 sin 𝑥𝑥 𝑑𝑑𝑥𝑥. 
Choices: (1) 𝑓𝑓(𝑥𝑥) = 𝑒𝑒𝑥𝑥,𝑔𝑔′(𝑥𝑥)𝑑𝑑𝑥𝑥 = sin 𝑥𝑥 𝑑𝑑𝑥𝑥. This gives 𝑔𝑔(𝑥𝑥) = − cos 𝑥𝑥. Hence we 
have 𝐼𝐼 = 𝑓𝑓𝑔𝑔 − ∫ 𝑔𝑔𝑑𝑑𝑓𝑓 = −𝑒𝑒𝑥𝑥 cos  𝑥𝑥 − ∫ (− cos 𝑥𝑥) ⋅ 𝑒𝑒𝑥𝑥𝑑𝑑𝑥𝑥 =−𝑒𝑒𝑥𝑥 cos  𝑥𝑥 +
∫ cos 𝑥𝑥 𝑒𝑒𝑥𝑥𝑑𝑑𝑥𝑥 = − 𝑒𝑒𝑥𝑥 cos 𝑥𝑥 + ∫ 𝑒𝑒𝑥𝑥𝑑𝑑 sin 𝑥𝑥 

= −𝑒𝑒𝑥𝑥 cos 𝑥𝑥 + (𝑒𝑒𝑥𝑥 sin 𝑥𝑥 −∫ sin 𝑥𝑥 𝑒𝑒𝑥𝑥𝑑𝑑𝑥𝑥) 
𝐼𝐼 = −𝑒𝑒𝑥𝑥 cos 𝑥𝑥 + 𝑒𝑒𝑥𝑥 sin 𝑥𝑥 − 𝐼𝐼 

Hence 𝐼𝐼 = 1
2

(−𝑒𝑒𝑥𝑥 cos 𝑥𝑥 + 𝑒𝑒𝑥𝑥 sin 𝑥𝑥) + 𝐶𝐶. 

 
3) Reduction Formula – this example is about “reduction formula”. 
(A reduction formula is a formula relating a more complicated integral to a less 
complicated one) 
Example: Find 𝐼𝐼𝑛𝑛 = ∫ 𝑥𝑥𝑛𝑛𝑒𝑒𝑥𝑥𝑑𝑑𝑥𝑥. 
Solution: 𝐼𝐼𝑛𝑛 = ∫ 𝑥𝑥𝑛𝑛𝑑𝑑𝑒𝑒𝑥𝑥  by choosing 𝑓𝑓(𝑥𝑥) = 𝑥𝑥𝑛𝑛 and 𝑑𝑑𝑔𝑔(𝑥𝑥) = 𝑑𝑑𝑒𝑒𝑥𝑥 
Using the formula ∫ 𝑓𝑓𝑑𝑑𝑔𝑔 = −∫ 𝑔𝑔𝑑𝑑𝑓𝑓 + 𝑓𝑓𝑔𝑔   we obtain 𝐼𝐼𝑛𝑛 = ∫ 𝑥𝑥𝑛𝑛𝑑𝑑𝑒𝑒𝑥𝑥 
= −∫ 𝑒𝑒𝑥𝑥𝑑𝑑𝑥𝑥𝑛𝑛 + 𝑥𝑥𝑛𝑛𝑒𝑒𝑥𝑥 = −∫ 𝑛𝑛𝑥𝑥𝑛𝑛−1𝑒𝑒𝑥𝑥𝑑𝑑𝑥𝑥 + 𝑥𝑥𝑛𝑛𝑒𝑒𝑥𝑥 = −𝑛𝑛𝐼𝐼𝑛𝑛−1 + 𝑥𝑥𝑛𝑛𝑒𝑒𝑥𝑥 
which relates 𝐼𝐼𝑛𝑛 to 𝐼𝐼𝑛𝑛−1. 



Note that when 𝑛𝑛 = 1, this is just our first example above. 
 
The Paradox 𝟎𝟎 = 𝟏𝟏 via Integration by Parts 
In the following, we will show that 0 = 1 by using integration by parts. This 
example shows that the constant is important. 
 
Example 

Let’s compute ∫ 1
𝑥𝑥

 𝑑𝑑𝑥𝑥 by using integration by parts. To do this, we choose 𝑓𝑓(𝑥𝑥) = 1
𝑥𝑥
 

and 𝑑𝑑𝑔𝑔(𝑥𝑥) = 1 ⋅ 𝑑𝑑𝑥𝑥. Then we have ∫ 𝑓𝑓𝑑𝑑𝑔𝑔 = ∫ 1
𝑥𝑥
𝑑𝑑𝑥𝑥 = −∫ 𝑔𝑔𝑑𝑑𝑓𝑓 + 𝑓𝑓𝑔𝑔 

= −∫ 𝑥𝑥𝑑𝑑(𝑥𝑥−1) + 𝑥𝑥(𝑥𝑥−1) = −∫ 𝑥𝑥(−𝑥𝑥−2)𝑑𝑑𝑥𝑥 + 1 = �
1
𝑥𝑥

  𝑑𝑑𝑥𝑥 + 1 

Cancelling the terms ∫ 1
𝑥𝑥
𝑑𝑑𝑥𝑥 , we get 0 = 1. 

 
Remark: 
One explanation of this paradox is that the constant of indefinite integral is 
important. If we choose a suitable constant, the paradox can be resolved. 
 
We will see more explanations later. 

 
Explanation of the formula ∫ 𝒇𝒇𝒇𝒇𝒇𝒇 = −∫ 𝒇𝒇𝒇𝒇𝒇𝒇 + 𝒇𝒇𝒇𝒇 
 
First note that the formula is equivalent to ∫ (𝑓𝑓𝑑𝑑𝑔𝑔 + 𝑔𝑔𝑑𝑑𝑓𝑓) = 𝑓𝑓𝑔𝑔    (1) 
 

⇔∫𝑑𝑑(𝑓𝑓𝑔𝑔) = 𝑓𝑓𝑔𝑔 

To prove (1), we start from the product rule for differentiation, i.e. 
𝑓𝑓𝑔𝑔′ + 𝑓𝑓′𝑔𝑔=(𝑓𝑓𝑔𝑔)′ 

⇔𝑓𝑓
𝑑𝑑𝑔𝑔
𝑑𝑑𝑥𝑥

+ 𝑔𝑔
𝑑𝑑𝑓𝑓
𝑑𝑑𝑥𝑥

=  
𝑑𝑑(𝑓𝑓𝑔𝑔)
𝑑𝑑𝑥𝑥

 

  

⇔𝑓𝑓
𝑑𝑑𝑔𝑔
𝑑𝑑𝑥𝑥

𝑑𝑑𝑥𝑥 + 𝑔𝑔
𝑑𝑑𝑓𝑓
𝑑𝑑𝑥𝑥

𝑑𝑑𝑥𝑥 =  
𝑑𝑑(𝑓𝑓𝑔𝑔)
𝑑𝑑𝑥𝑥

𝑑𝑑𝑥𝑥 

⇔∫𝑓𝑓 𝑑𝑑𝑑𝑑
𝑑𝑑𝑥𝑥
𝑑𝑑𝑥𝑥 + ∫𝑔𝑔 𝑑𝑑𝑑𝑑

𝑑𝑑𝑥𝑥
𝑑𝑑𝑥𝑥 = ∫  𝑑𝑑(𝑑𝑑𝑑𝑑)

𝑑𝑑𝑥𝑥
𝑑𝑑𝑥𝑥      (***) 

 



But now 𝑓𝑓 𝑑𝑑𝑑𝑑
𝑑𝑑𝑥𝑥
𝑑𝑑𝑥𝑥 = 𝑓𝑓𝑑𝑑𝑔𝑔,   𝑔𝑔 𝑑𝑑𝑑𝑑

𝑑𝑑𝑥𝑥
𝑑𝑑𝑥𝑥 = 𝑔𝑔𝑑𝑑𝑓𝑓, 𝑑𝑑(𝑑𝑑𝑑𝑑)

𝑑𝑑𝑥𝑥
𝑑𝑑𝑥𝑥 = 𝑑𝑑(𝑓𝑓𝑔𝑔), so (***) gives 

∫ 𝑓𝑓𝑑𝑑𝑔𝑔 + 𝑔𝑔𝑑𝑑𝑓𝑓 = 𝑓𝑓𝑔𝑔 
 
which is just (1) above, as was required to be proved. 
 
 
Other Methods of Computing ∫ 𝒇𝒇(𝒙𝒙)𝒇𝒇𝒙𝒙 

Substitution Method (Case 1. Simple Substitution) 
∫ (1 + 𝑥𝑥)100𝑑𝑑𝑥𝑥 

 
A straight-forward but tedious method to compute this indefinite integral is to 
expand (1 + 𝑥𝑥)100 and the compute them term by term. 
 
A much better method is to let 𝑢𝑢 = 1 + 𝑥𝑥 to get 𝑑𝑑𝑢𝑢 = (1 + 𝑥𝑥)′𝑑𝑑𝑥𝑥 = 𝑑𝑑𝑥𝑥 and 
hence 

∫ (1 + 𝑥𝑥)100𝑑𝑑𝑥𝑥 = ∫ 𝑢𝑢100𝑑𝑑𝑢𝑢 =
𝑢𝑢101

101
+ 𝐶𝐶 

Another Example 

Find ∫ 𝑑𝑑𝑥𝑥
𝑥𝑥 ln𝑥𝑥

,    𝑥𝑥 > 1 

Solution: The idea is to “see” that 𝑑𝑑𝑥𝑥
𝑥𝑥

= 𝑑𝑑 ln 𝑥𝑥 . Hence we can let 𝑢𝑢 = ln 𝑥𝑥 which 

gives ∫ 𝑑𝑑𝑥𝑥
𝑥𝑥 ln𝑥𝑥

= ∫ 𝑑𝑑𝑑𝑑
𝑑𝑑

= ln𝑢𝑢 + 𝐶𝐶 = ln(ln 𝑥𝑥) + 𝐶𝐶. 

 
Some Theory 
The reason why the above method works is due to the Chain Rule (which we will not 
elaborate here). 
 
In general, in using the “substitution method”, the (indefinite) integral takes the 
form 

∫ 𝑓𝑓�𝑔𝑔(𝑥𝑥)�𝑔𝑔′(𝑥𝑥)𝑑𝑑𝑥𝑥 
so that we can rewrite the term 𝑔𝑔′(𝑥𝑥)𝑑𝑑𝑥𝑥 as 𝑑𝑑𝑢𝑢 (after letting 𝑢𝑢 = 𝑔𝑔(𝑥𝑥)). Doing 
this, the integral ∫ 𝑓𝑓�𝑔𝑔(𝑥𝑥)�𝑔𝑔′(𝑥𝑥)𝑑𝑑𝑥𝑥 becomes ∫ 𝑓𝑓(𝑢𝑢)𝑑𝑑𝑢𝑢,  which may be easier to 
compute. 
 
 



Examples (for ∫ 𝒇𝒇�𝒇𝒇(𝒙𝒙)�𝒇𝒇′(𝒙𝒙)𝒇𝒇𝒙𝒙 = ∫ 𝒇𝒇(𝒖𝒖)𝒇𝒇𝒖𝒖) 

1) ∫ 1
𝑥𝑥 ln𝑥𝑥 

𝑑𝑑𝑥𝑥 = ∫ 1
ln𝑥𝑥

1
𝑥𝑥
𝑑𝑑𝑥𝑥 = ∫ 1

ln𝑥𝑥
𝑑𝑑(ln 𝑥𝑥) = ∫ 𝑓𝑓(𝑢𝑢)𝑑𝑑𝑢𝑢, where now 𝑓𝑓(𝑢𝑢) = 1

ln  𝑥𝑥
 

and 𝑢𝑢 = ln 𝑥𝑥. 
2) ∫ (1 + 𝑥𝑥2)7𝑥𝑥𝑑𝑑𝑥𝑥 

Now the term 𝑥𝑥𝑑𝑑𝑥𝑥 = 𝑑𝑑 �𝑥𝑥
2

2
� = �1

2
� 𝑑𝑑𝑥𝑥2. We can now let 𝑢𝑢 = 𝑥𝑥2 and obtain  

∫ (1 + 𝑥𝑥2)7𝑥𝑥𝑑𝑑𝑥𝑥 = ∫ (1 + 𝑢𝑢)7 �
1
2
� 𝑑𝑑𝑢𝑢 = ⋯ 

 
Important Remark: 
In the above paragraph, we see that the function to be integrated is now  

𝑓𝑓�𝑔𝑔(𝑥𝑥)�𝑔𝑔′(𝑥𝑥) 
In order that we can get ∫ 𝑓𝑓�𝑔𝑔(𝑥𝑥)�𝑔𝑔′(𝑥𝑥)𝑑𝑑𝑥𝑥 (or equivalently, solve 𝐹𝐹′(𝑥𝑥) =
𝑓𝑓�𝑔𝑔(𝑥𝑥)�𝑔𝑔′(𝑥𝑥)), this function 𝑓𝑓�𝑔𝑔(𝑥𝑥)�𝑔𝑔′(𝑥𝑥) has to be continuous. 
 
Substitution Method (Case 2) Trigonometric Substitution Method 
A very important class of substitution is the “trig. sub.”. They are there mainly to 
deal with integrals involving (i) a square root sign, (ii) a quadratic term inside the 
square root. 
 
Example 

Find ∫ 𝑑𝑑𝑥𝑥
√𝑎𝑎2−𝑥𝑥2

,   𝑎𝑎 > 0 

Main Idea: Completing square, i.e. to rewrite the expression inside the square root 
sign to become “something squared”. There are many ways to get this, one way is to 
let  𝑥𝑥 = 𝑎𝑎 sin 𝑡𝑡. 
Doing this, we obtain   𝑥𝑥 = 𝑎𝑎 sin 𝑡𝑡    𝑔𝑔𝑔𝑔𝑔𝑔𝑒𝑒𝑔𝑔     𝑑𝑑𝑥𝑥 = 𝑎𝑎 cos 𝑡𝑡 𝑑𝑑𝑡𝑡 
Also, we have √𝑎𝑎2 − 𝑥𝑥2 = √𝑎𝑎2 − 𝑎𝑎2 sin2 𝑡𝑡 = 𝑎𝑎| cos 𝑡𝑡| 
  

Therefore 1
√𝑎𝑎2−𝑥𝑥2

= 1
𝑎𝑎| cos 𝑡𝑡|

 

And 𝑑𝑑𝑥𝑥
√𝑎𝑎2−𝑥𝑥2

= 𝑎𝑎 cos 𝑡𝑡 𝑑𝑑𝑡𝑡
𝑎𝑎| cos 𝑡𝑡|

=? 

Supposing the case “cos 𝑡𝑡 > 0” is true, then we have 
 

∫
𝑑𝑑𝑥𝑥

√𝑎𝑎2 − 𝑥𝑥2
= ∫ 𝑑𝑑𝑡𝑡 = 𝑡𝑡 + 𝐶𝐶 = arcsin �

𝑥𝑥
𝑎𝑎
� + 𝐶𝐶 



Remark: 
This question already reveals to us that “blind” use of “formal” computation is not 
enough, one sometimes have to think about the domain of integration. (A correct 
choice of “domain of integration (More later)” will lead to | cos 𝑡𝑡| = cos 𝑡𝑡 
 
Another Example 

Find ∫ 1
1+𝑥𝑥+𝑥𝑥2

𝑑𝑑𝑥𝑥. 

 

First we have to rewrite it in the form ∫ 𝑑𝑑𝑑𝑑
𝑎𝑎2+𝑏𝑏2𝑑𝑑2

 for some suitable choices of 𝑎𝑎 

and  𝑏𝑏. 
 
How to do it? 

Completing square again. 1 + 𝑥𝑥 + 𝑥𝑥2 = �3
4
� + �𝑥𝑥 + �1

2
��

2
= �√3

2
�
2

+ �𝑥𝑥 + �1
2
��

2
   

Now we can let 𝑢𝑢 = 𝑥𝑥 + �1
2
� and get 1

1+𝑥𝑥+𝑥𝑥2
𝑑𝑑𝑥𝑥 = 1

�√32 �
2
+𝑑𝑑2

𝑑𝑑𝑢𝑢. 

 
Next, we perform another completing square to make the denominator a “complete 
square”.  
 

To do this, we let 𝑢𝑢 = √3
2

tan𝜃𝜃, which leads to 𝑑𝑑𝑢𝑢 = √3
2

sec2 𝜃𝜃 𝑑𝑑𝜃𝜃. 

On the other hand, �√3
2
�
2

+ 𝑢𝑢2 = �√3
2
�
2

(1 + tan2 𝜃𝜃) = �√3
2
�
2

sec2 𝜃𝜃 

Putting everything together, we have  𝑑𝑑𝑑𝑑√3
2

 

 

Hence ∫ 1

�√32 �
2
+𝑑𝑑2

𝑑𝑑𝑢𝑢 = ∫ 𝑑𝑑𝑑𝑑
√3
2

= 2
√3
𝜃𝜃 + 𝐶𝐶 = 2

√3
arctan 2

√3
𝑢𝑢 + 𝐶𝐶 

 

=
2
√3

arctan
2
√3

�𝑥𝑥 +
1
2
� + 𝐶𝐶 

 


