Math 1010 Week 13

Definite Integrals

13.1 Motivation

Given a continuous function over a closed interval. We want to approximate the
area of the region bounded by the graph of the function and the z-axis.

One way to do so is by viewing the region roughly as a union of sequence of
rectangles, and then adding up the areas of these rectangles.
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Intuitively, we see that the more (and smaller) rectangles are used, the more
closely their union approximates the region in question.
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Definition 13.1. Let n be a positive integer.
Let f : [a,b] — R be a continuous function on a closed interval.

Let: 1
Ap = — a‘

n
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The Left Riemann Sum of f over |a,b| associated with n subintervals of equal
lengths is:

i
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:A:c[f(a)+f(a+Ax)+f(a+2Ax)+...

~~~—|—f(a+(n—1)Ax)]
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Each summand may be thought of as the area of the rectangle whose base is the
subinterval [a + kAz,a + (k + 1)Axz], and whose height is the value of f at the
left endpoint of the subinterval.

IMAGEy = f(x)f(z)Azz

Definition 13.2. Ler f : [a,b] — R be a continuous function on a closed interval.
b

The definite integral / f(z) dx of f over [a,b] is equal to the limit as n tends to

infinity of the left Riemann sum defined previously. That is:
b

b—a e k(b — a)
= 3 (o HE)

It is an established theorem that the limit exists if f is continuous.

(In fact: One could define the definite integral in terms of the Right Riemann
Sum or the Midpoint Riemann Sum. All these sums tend to same limit in the case
where [ is continuous.) Our eventual goal is to show that if F'is an antiderivative
of a continuous function f, then:

b

[ =

= F(b) — F(a).

a

e Integration by Substitution

u(b)
" f(u) du = F(u(b)) = F(u(a))

[ o) iz =

if I is an antiderivative of f.



e Integration by Parts

¢ Integration by Trigonometric Substitution
3 /4

dx / 9

— = cos f sec” 6db

/3 V32 + 22 —

e Reduction Formulas

w/2 1
/ cos"xdr = (— cos" !z sin x)
0 n

7T/2 7'('/2
—1
+ n / cos" 2 xdx.
0 n 0

Before we prove the main theorem, we first state a couple of preliminary re-

sults.

Fact 13.3. For a continuous function f on [a,b], we have:

/aaf(x)dx:().

/baf(x)d:v: —/abf(x)dx.

Fact 13.4. Let f be a continuous function on an interval I. For all a,b,c € I, we
have:

/abf(x)d:1:~l—/bcf(x)d3::/acf(as)dx.

If f is an odd continuous function, then:
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/_z f(x)dz= /_0 f(z)dz + /Oa f(z)dz
/

I
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If f is an even continuous function, then:

t=—2x

f(z)dz

(f(—x))dr + / " fla)ds
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/_ f(a)de = 2/0af(:v)dx

Claim 13.5. Let f, g be continuous functions on |a,bl. If f(x) < g(x) for all

/a ) de < / gy e

Example 13.6. Find the area of the region in the ry-plane bounded between the
graph of y = x* — 2x — 3 and the x-axis over the interval [1,5].

x € [a,b], then:
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The geometric area of the region described is equal to:

5
/ ‘x2—2x—3} dz
1

Consider the sign chart for the values of f(z) = 2> —2x — 3 = (v + 1)(z — 3)

over the interval [1,5]:

f(@):

X!

[1,3)

(3, 5]

Hence,
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Theorem 13.7. (Mean Value Theorem for Integrals) Let f be a continuous
function on [a, b]. There exists ¢ € [a, b] such that:

:bia /abf(x)d:v

Proof. Since f is continuous on [a, b], by the Extreme Value Theorem it has a
maximum value M and minimum value m on |[a, b].
In other words,

m< f(z) <M
for all = € [a, b]. Hence:

/mdx</f dx</de
M(ba)

Dividing each expression by b — a, we have:

m < b— / f(z)de < M.

Let x1, z2 be elements in [a, b] such that M = f(x;) and m = f(x2). Since

f is continuous on |a, b], and T / f(z) dx is a number between f(z;) and
—a

f(x2), by the Intermediate Value Theorem there exists ¢ between x; and x5 such

that:
- a/ fla

This ¢ lies in [a, b], since x1, 29 lies in [a, b]. O
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Theorem 13.8 (Fundamental Theorem of Calculus Part I). Let f be a continuous
function on [a, b]. Define a function F : [a,b] — R as follows:

F(z) = /I ft)dt, z€la,b].

Then, F is continuous on [a, b] and differentiable on (a,b), with:

forall x € (a,b). Equivalently:

d x

= | rwa= @
Proof. By definition:
F(z+h)— F(x)

F'(z) = }llir%
%
o da )= [T () dt
= lim
h—0 h
x+h
t)dt
= lim L” f( )
h—0 h

By the Mean Value Theorem for Integrals, there exists ¢;, € [z, z + h] such

that:
L r@) d

Hence:

F(2) = lim f(er) = f(2),

since for any h the number ¢;, lies between x and = + h, and f is continuous.

We leave the proof of the continuity of /' on [a, b] as an exercise. U

Corollary 13.9. Let [ be a continuous function. Let g and h be differentiable
functions. Then:

d [

dx [, SO =TGN E) = f6w) @)



Example 13.10. Evaluate:

d I3+1 2 341)2 : 2
e et dt = (-@*+D) )<£L‘3 +1) — e(~(sinz) )(sinx)’
T

sinx

— (@ D?) 1302 (=GinD)?) (g
Example 13.11. Evaluate:
1 2+h

lim ———— Vit 4+ 1dt

h—ot In(1+h) Jy

We have:
1 2+h [T 1 dt
lim ———— VIF+ 1dt = lim 22 13.1
hoo+ In(1+ 7) Jy * hoot In(1+ h) (131

Computing the limits of the numerator and denominator separately, we have:

2+h

2
lim \/t4+1dt:/ Vit +1dt =0
2

h—0t 2

(because F'(h) = 22+h Vt* + 1dt is a continuous function by Fundamental The-

orem of Calculus Part 1 ), and:
lim In(1+h)=In(1+0)=0
h—0t
(also because f(h) = In(1 + h) is a continuous function).
Hence, the limit (I3.1) corresponds to the indeterminate form 3.

Taking the limit of the ratio of the derivatives of the numerator and denomina-
tor, we have:

d 2+hmdt_ ' ( (2+h)4+1)(2+h)’

lim 22 =1
B0 % In(1+ h) ok HLh
— lim (1 h( 2+ h) 1)
i (147) (V24 7)* +

=17
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It now follows from I’Hopital’s rule that:

Vi F 1dt =17,

1 2+h
lim ————
hoor In(1+ 7) J,

There is a general formula regarding derviatives of the form:

I e nya
— x,t)dt,
dx a(x)

the discussion of which is beyond the scope of this course. However, in certain
special cases, the derivative may be found using Corollary 13.9 without much
further effort:

Example 13.12. Find:

d 3 sin(zt
—/ sin(z )dt, 7> 0. (13.2)

Again, we first view  as a constant.
Let:
_ .2
u = x°t.
So:

U 1

Under this change of variable, the integral:

t=322 _: 2
t
/ sin(x*t) ot
t

t

=T

is equal to:

/“3“’4 sin(u) idu _ /“33”4 sin(u) du
u=x3 (u/x2) x? u=x3 Uu

It now follows from Corollary 13.9 that:

t=3z2 _: 2 u=3z* _:
d sin(z°t) 5 d [/ sin(u) du] .

sin(3x%) 5 sin(z?) _
_ 4sin(32")  3sin(2?)
B T T
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Theorem 13.13 (Fundamental Theorem of Calculus Part II). Let f be a contin-
uous function on [a,b]. Let F' be a continuous function on [a,b| which is an an-
tiderivative of f over (a,b). Then:

b
/ f(x)dx = F(b) — F(a).

Proof. By the Fundamental Theorem of Calculus Part I, we know that G(x) =
[ f(t) dt is also an antiderivative of f. By Lagrange’s Mean Value Theorem and
the continuity of /" and G on [a, ], for all z € [a, b] we have:

G(z) = F(z) + C

for some constant C' "
Since G(a) = / f(t)dt =0, we have C = —F'(a).

a
Hence:

/v@ﬁzG@:F@+C=HM—H@
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