Math 1010 Week 12

Indefinite Integrals, Reduction Formulas, Partial Fractions,
t-Substitution

12.1 Reduction Formulas

Letn € N.

Example 12.1.

Example 12.2. Forn > 2,

1 _ . n—1 _
/cos”xdx: Z cos" trsingx + cos" 2z dz.
n n

Let U = cos" 'z, dV = cos x dx. Then:
dU = —(n —1)cos" *xsinzdr, V =sinx.

It follows from Section 10.8 () that:
/UdV:UV—/VdU
=cos" 'wsinz + (n—1) /Sin2 xcos" 2 xdx
=cos" tasinz + (n— 1) /(1 — cos? z) cos" ? xdx
= cos" tasinz + (n— 1) /cos”_Q xdr —(n—1) /cosn xrdx
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Hence:
(14+(n—-1)) /cos”mdw
=cos" 'xsinz + (n—1) /cos”_2 xdz.

Dividing both sides of the equation by n, we obtain:

1 n—1
/cos"a:dac: ~cos" ' xsinx + cos" 2z dux.
n n

Example 12.3. Forn > 2,

) | n—1 e
/sm"xdx: —— sin" 'xcosx + sin" 2 z dz.

n n

Example 12.4. Forn > 3,

1 n—2
/sec" T dr = sec" 2 rtanz + /secn2 xdx.
n—1 n—1

Example 12.5.

/ (Inz)"dz = z(lnz)" —n / (Inz)" da.

12.2 WeBWork
1. WeBWorK
2. WeBWorK

3. WeBWorK

12.3 Partial Fractions

Definition 12.6. A rational function —, where r, s are polynomials, is said to be
s

proper if:
degr < degs.
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By performing long division of polynomials, any rational function }—), where

q
P, q are polynomials, may be expressed in the form:

. . r. . . r
where ¢ is a polynomial, and — is a proper rational function. Let — be a proper
s
rational function. Factor s as a product of powers of distinct irreducible factors:

s=-(x—a)™ - ( 2®+br+c ).
———
irreduciblei.e. b2—4c<0
Then:

. . r . .
Fact 12.7. The proper rational function — may be written as a sum of rational
s

functions as follows:

r_
o=
Al AQ Am
+m_a+(x_a)2++m+..
Blflf+01 BQIB+CQ BnZL‘+Cn
24br+c (24br+c)? (22 Fbx+o)

+ SRR
where the A;, B;, C; are constants.

Example 12.8. / ——dx

Performing long division for polynomials, we have:

(23 — 2z —2) / /33:—2
_— e 2
/ R dx (x +2)dx + x2—2xdaj

1, 3x — 2
:§x +2x—|—/x2_2xdx.

3xr — 2
d
/x2—2x .

we first observe that the integrand is a proper rational function. Moreover, the
denominator factors as follows:

To evaluate:

? - 20 =2(r —2).
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Hence, by Fact 12.7,, we have:
3r—2 A B

2 —-2r x x-2

for some constants A and B. Clearing denominators, we see that the equation

above holds if and only if:
3r —2=A(x —2) + Bz. (*)

Letting x = 2, we have:
3:2—2=B-2,

which implies that B = 2. Similarly, letting x = 0 in equation (x) gives:
—2=-2A,
which implies that A = 1. Hence:

3r—2 1 2
/x2—2:cdx_/<5+:c—2)dx

=In|z|+2In|z —2|+C,

where C' represents an arbitrary constant.
We conclude that:

R 1
wdw = 2 + 2v + In|z| + 2Injz—2| + C.
x? — 2z 2

x
Example 12.9. / @+ D)z —3) dx
First we note that the integrand is a proper rational function.
The quadratic factor x> + 4 has discriminant 0> — 4 - 4 < 0, hence it is
irreducible.
By Fact 12.7, we have:

x —A$+B+ C
(z24+4)(z —3) 22+4 2-3

for some constants A, B and C. Clearing denominators, the equation above holds
if and only if:
= (Az+ B)(z — 3) + C(2* 4+ 4) (%)
Letting x = 3, we have:
3=0C-13,
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which implies that C' = 3/13.
Letting x = 0, we have:

0= —-3B+4C,
which implies that B = (4/3)C = 4/13.

Finally, viewing each side of equation (x) as polynomials and comparing the
coefficients of x* on each side, we have:

0=A+C,

which implies that A = —C = —3/13.
Hence:

/ v dx
(2 4+4)(x — 3)
1 [—3zr+4 3
_E/ ol Y R S
1 /-3 1 1
— (= d(z? + 4 —d
13(2 /x2+4 (@"+ )+/(93/2)2+1 v

1
+3/w_3d93)

1 /-3
=13 (71n |2* + 4| + 2 arctan(z/2) 4+ 3In |z — 3\) + D,

where D represents an arbitrary constant.

1.3

E le 12.10. d
xampre /(x2+a:+1)(x—3)2 v

First, we observe that:

1133

(x2+ x4+ 1)(z —3)?

is a proper rational function. Moreover, since the discriminant of x*>+x+1is 12 —
4 < 0, this quadratic factor is irreducible. So, there exist constants A, B,C, D
such that:

x3 Ax + B C D

($2+a:—|—1)(x—3)2_x2+x—|—1+x—3+(x—3)2.

The equation above holds if and only if:

2 = (Az + B)(z = 3> + C(a* + x + 1)(z — 3)

+ D(2* +x +1). ()



Letting x = 3, we have:
27 = 13D.

So, D = 27/13.

To find A, B and C, we view each side of the equation (x) as polynomials,
then compare the coefficients of the 13, 12, x and constant terms respectively:

z® 1=A+C
z? 0=—-6A+ B —2C +27/13
z: 0 =94 — 6B — 2C + 27/13
1. 0=9B - 3C +27/13
Subtracting equation (12.2)) from equation (12.3)), we have:
0—=154— 7B,

(12.1)
(12.2)
(12.3)
(12.4)

which implies that B = 15A/7. Combining this with equation (12.1)), we have:

B=15(1—-C)/7 =15/7 — 15C/T.
It now follows from equation (12.4)) that:
0 =135/7 — 135C/7 — 3C + 27/13.

Hence:
162
C=—
169
p_ 1
169
s
169
2
D=2
13
We have:

/(x2+3:—|—1)(:c—3)2 du

_/ Trls 162 2 o
~ ) 16922+ +1) 169 (x —3) | 13(x —3)°
B / Tr 4+ 15 dr
) 169 (22 + 2+ 1)
162 1 27 1
il N S LA (N
" 169 (x—S)x+13/(x—3)2x



To evaluate | 1697”15

md:ﬁ, we first rewrite the integral as follows:

Tz + 15 1 [Te+7/2-7/2+15
de = — dz
169 (22 +x + 1) 169 > +ar+1

- L Z/—%H dx+2—3/ ! dz
169 [2) 224+ +1 2 ) (x+1/2)2+3/4

\ .
~~

d(xz2424+1 4 4
(2242+1) 3f((2w+1)/\/§)2+1da:

1
f z24z+1

7 ) 23-2 /3
= %lnh + x4 1 +m7arctan ((2x+1)/\/§> +FE

= ’ ln‘x2+$+1}+ 23
338 169+/3

where E represents an arbitrary constant.
It now follows that:

arctan ((Qx + 1)/\/§> + E,

/(x2+x+1)<x—3)2 da

7 23
= —In|z2+x+ 1]+ arctan(2x+1 \/§)

338 | | 169v/3 ( )/
162 277 1
hlr-3 -2~ 4+ F

LT R Rl T Py
8 2
Example 12.11. / g

12.4 WeBWork

1. WeBWorK
2. WeBWorK
3. WeBWorK
WeBWorkK
WeBWorK

AN AR

WeBWork
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7. WeBWorK
8. WeBWorK
9. WeBWorK
10. WeBWorK
11. WeBWorK
12. ' WeBWorK
13. WeBWorK
14. ' WeBWorK
15. WeBWorK

12.5 How Does Partial Fractions Decomposition Work?

This section is optional. You don’t have to study it for Math 1010.

Theorem 12.12 (Unique Factorization of Real Polynomials). Given any polyno-
mial f € R|x], that is:

f=a+ax+..+ax", a; €R,

There are distinct irreducible polynomials, p1,ps,...,p; in Rlx], of degree at
most 2, such that:

f=p"ps*pp
for some positive integers ny,no, . . . ,ny. Up to ordering of the irreducible factors,
this factorization is unique.

Theorem 12.13 (Bézout’s Identity). If f and g are two irreducible polynomials
in R[z] with no common factors, then there exist a,b € R[x] such that:

af +bg =1

Suppose we have a rational function g, where p, g € R[z] have no common
factors, and deg p < deggq.

By Unique Factorization of Real Polynomials|, there are distinct irreducible
polynomials ¢1, qs, . . ., q;, of degree at most 2, such that:

ni1 n2

q=a"%* - q",
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for some positive integers ni, na, ..., n;.
Since the polynomial ¢}'"* has no common factors with ¢5* . .. ¢, by Bézout’s
Identity| there exist polynomials f, g such that:

[ q") +gq =1

Hence,
p p-l
¢ q
p(fes® - q" +9a1")
q”1QS2- gy
T
oGt
Consider now the term: ﬁ By the Divison Algorithm for real polynomials,
we have: “
pf=aq +r

for some real polynomials a, r such that degr < deg ¢;. Hence,

pf _an+r _ a o
@'t T a
By the same reasoning, we have:
a b s
q?l 1 q?l —2 q?l 1

for some polynomials b, s such that deg s < degq;.
Repeating this process, eventually we have:

T T
%—i+%+ g,
0 @ 4 @'

where deg r; < deg ¢1, and a; is some polynomial.
We now have:

To Tn
B:_+_+...+Ti+al+%_
9 o 4 U5l ay" - q
Repeating the process for the term: %, and then for all subsequent
dy" - q

resulting terms of similar forms, we have:

2532527%3 (12.5)

kljlqk
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where deg rj; < deg gy, and h is some polynomial in R[z].
We claim that A = 0.
Multiplying both sides of equation (12.5) by the polynomial ¢, we have:

l ng
p=3"3"ry L +hq (12.6)

J
k=1 j=1 qk

Since every qi in the sum divides ¢, each % is a polynomial. So, the equation
k

above is an equality between polynomials.
By assumption, deg p < deg gq. On the other hand, each term:

Tkj'

:Sw.l'Q

has degree strictly less than g, since deg 7; < deg gy.

So, if h # 0, then the right-hand side of equation (12.6) has degree deg h +
deg q > deg q > deg p, contradicting the equality of the two sides.

Hence, h = 0. It follows that:

12.6 t¢-Substitution

1
/—d:p
1+ 2cosx

Example 12.14. Evaluate:

Let:
t = tan =
5
(Here, we are assuming that v € (—m,m)).
Then,
xr = 2arctant,
2
dr = ——=dt
1+¢2
Moreover,
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by the double-angle formula for the sine function, we have:

. .z T
Sinx = 2sin — cos —
2 2

PN T
sin 2 T
= 2—i cos? =
Cos 5 2

B 2tan§

- 2z
sec” 3
2t

B

Similarly, by the double-angle formula for the cosine function, we have:

cosaszl—Qsin2£
T T
=1—2tan® S cos® =
an 2COS 5
_ _2tan2§
sec? 5
B 2t
B 1+2
1
142

We have:

142

:/3—t2dt

1 1 1
:ﬁ/<x/§+t+\/§—t) .
:%On‘\/g—l—t‘—ln‘\/g—tD—FC

1 |V3+tani
= —nN|—
\/§ \/g—tanE

2

/ 1 d / 1 2 gt
—_——dxr=
14 2cosx 1+2(1_t2)1+t2

2

+C,

where C' is an arbitrary constant.

Example 12.15. Evaluate:

/ 1
- dx
1+sinx +cosx
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Let t = tan % Then:

2
dr = dt
v 1+¢2
) 2
SIN T =
1+ ¢2
1—¢2
COSx =
1+¢2

2

/ ! dx:/ [ETii
1 +sinz + cosx 1+H%+1—t2

1422
2dt 1
= [ —at
242t 1+t
In|l1+t+C

ln‘l—i—tan%‘—i—(j

sin x

In|1+

- _|_C”
1+ cosz

where C'is an arbitrary constant.
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