
Math 1010 Week 1

Sequences

1.1 Sequences and Limits
A sequence is an ordered list of numbers:

a1, a2, a3, . . . , an, . . .

Common notations:
{an}, {an}n∈N, {an}∞n=1

Example 1.1. •
an =

√
n , n ∈ N

{an}n∈N = {1,
√
2,
√
3, . . .}.

•
bn = (−1)n+1 1

n
, n ∈ N

{bn} =
{
1,−1

2
,
1

3
,−1

4
, . . .

}
.
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• Fibonacci Sequence
a1 = 1, a2 = 1

an = an−2 + an−1 forn ≥ 3.

{an} = {1, 1, 2, 3, 5, 8, 13, . . .}
In this case we say that the sequence {an} is defined recursively .

Sometimes, the terms an of a sequence approach a single value L as n tends
to infinity.

Definition 1.2. We say that the limit of a sequence {an} is equal to L if for all
real numbers ε > 0 the exists a number N > 0 such that |an − L| < ε for all
n > N .

If such a number L exists, we say that: {an} converges to L, and write:

lim
n→∞

an = L.

If no such L exists, we say that {an} diverges .
If the values of an increase (resp. decrease) without bound, we say that {an}

diverges to∞ (resp. −∞), and write:

lim
n→∞

an =∞ (resp.−∞).

Exercise 1.3. 1. WeBWorK

2. WeBWorK

3. WeBWorK

4. WeBWorK

1.1.1 Useful Properties

• Constant sequence
If an = c for all n, then limn→∞ an = limn→∞ c = c.
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• Sum/Difference rule
If both {an} and {bn} converge, then:

lim
n→∞

(an ± bn) = lim
n→∞

an ± lim
n→∞

bn.

• Product Rule
If both {an} and {bn} converge, then:

lim
n→∞

anbn =
(
lim
n→∞

an

)
·
(
lim
n→∞

bn

)
.

• Quotient Rule
If both {an} and {bn} converge, and limn→∞ bn 6= 0, then:

lim
n→∞

an
bn

=
limn→∞ an
limn→∞ bn

.

•
lim
n→∞

1

n
= 0.

• In general, if limn→∞ an = +∞ or limn→∞ an = −∞, we have:

lim
n→∞

1

an
= 0.
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1.1.2 Examples

• lim
n→∞

3n2 − 2n+ 7

2n2 + 3

= lim
n→∞

1
n2

1
n2

· 3n
2 − 2n+ 7

2n2 + 3

= lim
n→∞

3− 2
n
+ 7

n2

2 + 3
n2

=
3

2
.

• lim
n→∞

−3n2

3
√
27n6 − 5n+ 1

= lim
n→∞

−3n2

n2 3

√
27− 5

n5 +
1
n6

= lim
n→∞

−3
3

√
27− 5

n5 +
1
n6

=
−3
3
√
27

= −1.

• lim
n→∞

√
4n2 + n−

√
4n2 − 1
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= lim
n→∞

(√
4n2 + n−

√
4n2 − 1

)
·
(√

4n2 + n+
√
4n2 − 1

)(√
4n2 + n+

√
4n2 − 1

)
= lim

n→∞

(4n2 + n)− (4n2 − 1)(√
4n2 + n+

√
4n2 − 1

)
= lim

n→∞

n+ 1√
4n2 + n+

√
4n2 − 1

= lim
n→∞

n+ 1

n
(√

4 + 1
n
+
√

4− 1
n2

)
= lim

n→∞

1 + 1
n(√

4 + 1
n
+
√

4− 1
n2

)
=

1

4
.

Exercise 1.4. • WeBWorK

1.1.3 Monotonic Sequences
Definition 1.5. A sequence {an} is said to be:

• increasing if an+1 ≥ an for all n,

• decreasing if an+1 ≤ an for all n.

A sequence is said to be monotonic if it is either increasing or decreasing.

Theorem 1.6 (Monotone Convergence Theorem). If {an} is either:
increasing (i.e. an+1 ≥ an for all n) and bounded above (i.e. There exists a

number M such that an ≤M for all n.), or
decreasing (i.e. an+1 ≤ an for all n) and bounded below (i.e. There exists a

number M such that an ≥M for all n.), then {an} converges.

Moreover,
if {an} is increasing and an ≤M for all n, then limn→∞ an ≤M .
If {an} is decreasing and an ≥M for all n, then limn→∞ an ≥M .

Example 1.7. Let {an} be a sequence of real numbers, which is defined by

a1 = 1 and an =
12an−1 + 12

an−1 + 13
for n > 1.
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1. Prove that 0 ≤ an ≤ 3. (Hint: Perhaps mathematical induction could be
useful here.)

2. Prove that {an} converges (i.e. lim
n→∞

an exists), then find its limit.

Solution. 1. First, we show that an ≥ 0 for all n ∈ N.
Base Step : By definition, a1 = 1 ≥ 0.
Inductive Step : Suppose an ≥ 0 for some n ∈ N. We want to show that

an+1 ≥ 0 also.
By the definition of the sequence, we have:

an+1 =
12an + 12

an + 13
.

By the induction hypothesis , i.e. an ≥ 0, we have:

an + 13 > 0 and 12an + 12 ≥ 0.

Hence, an+1 ≥ 0.
It now follows from the principle of mathematical induction that an ≥ 0 for

all n ∈ N.

Similary, to show that an ≤ 3, we first observe that by definition a1 = 1 ≤ 3.
Whenever an ≤ 3, we have:

3− an+1= 3− 12an + 12

an + 13

=
3an + 39− 12an − 12

an + 13

=
9(3− an)

an + 13
≥ 0,

which implies that an+1 ≤ 3 also. Hence, by mathematical induction we con-
clude that an ≤ 3 for all n ∈ N.
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2. Observe that for all n ∈ N, we have:

an+1 − an=
12an + 12

an + 13
− an

=
12an + 12− a2n − 13an

an + 13

= −a2n + an − 12

an + 13

= −(an − 3)(an + 4)

an + 13

≥ 0,

since 0 ≤ an ≤ 3, as shown in Part 1.
This shows that {an} is an increasing sequence bounded above by 3. Hence,

the limit L = lim
n→∞

an exists, by the Monotone Convergence Theorem.
To find L, we take the limit as n→∞ of both sides of the equation:

an =
12an−1 + 12

an−1 + 13
.

That is:
lim
n→∞

an = lim
n→∞

12an−1 + 12

an−1 + 13
,

which gives:

L =
12L+ 12

L+ 13
,

since limn→∞ an−1 = limn→∞ an = L.
The equation above implies that:

L2 + L− 12 = 0,

which gives L = 3 or L = −4. Since the sequence {an} is bounded below by 0,
we may eliminate the case L = −4.

We conclude that:
lim
n→∞

an = 3.

1.1.4 Sandwich Theorem
Theorem 1.8 (Sandwich Theorem for Sequences). Let {an}, {bn}, {cn} be se-
quences such that:

an ≤ bn ≤ cn
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for all n sufficiently large. If

lim
n→∞

an = lim
n→∞

cn = L,

then limn→∞ bn = L also.
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