MATH 1030 Chapter 15

The lecture is based on Beezer, A first course in Linear algebra. Ver 3.5 Down-
loadable at http://linear.ups.edu/download.html .

The print version can be downloaded at http://linear.ups.edu/download/fcla-
3.50-print.pdf .

Reference.

Beezer, Ver 3.5 Chapter D (print version p261-282)

Exercise.

Exercises with solutions can be downloaded at http://linear.ups.edu/download/fcla-
3.50-solution-manual.pdf (Replace C by R)Section DM p.98 - 101 all, Section
PDM p.101-102 M30, T10, T15, T20

15.1 Definition of the Determinant

Suppose A is an m x n matrix. Then the submatrix A(i|j) is the (m—1) x (n—1)
matrix obtained from A by removing row ¢ and column j.

Example 15.1. Suppose

Then

Example 15.2.

a1 G122 a13 Q14
A — 21 Q22 A23 A4
az1 a3z az3 (a34
a41 G4 (A43 Q44


http://linear.ups.edu/download.html
http://linear.ups.edu/download/fcla-3.50-print.pdf
http://linear.ups.edu/download/fcla-3.50-print.pdf
http://linear.ups.edu/download/fcla-3.50-solution-manual.pdf
http://linear.ups.edu/download/fcla-3.50-solution-manual.pdf

Then

a11 aiz daiq 12 A1z dAiq
A(3!2) = |G21 Q23 G24 A(4!1) = | Q22 Q23 G24
Q41 Q43 Q44 32 a3z 34

Definition 15.3. Suppose A is a square matrix. Then its determinant, det (A) (or
denoted by |A|), is an element of R defined recursively by:

1. If Aisal x 1 matrix, then det (A) = [A],,.
2. If A is a matrix of size n with n > 2, then

det (A) = [A], det (A (1]1)) — [A],, det (A (1]2)) + [A],5 det (4 (1]3)) -
(AL det (A (L) + -+ (1) [A],, det (A (1]n))

= (1) Ay - det (A (1]E)

n

* x .- * A, * R

Ay Ay - A2(k—1) * A2(k+1) e Agy

A= : : D Asg—ny | * | Asgery 0 Ase |

: : : : * : : :

Anl oot An(kfl) * An(kJrl) e Ann

Agr Agp o+ Age—ry Asprny - Aoy

Aamy = | 0 e A A

Anl Tttt An(k—l) An(k—l—l) to Ann

So to compute the determinant of a 5 X 5 matrix we must build 5 submatrices,
each of size 4. To compute the determinants of each the 4 x 4 matrices we need
to create 4 submatrices each, these now of size 3 and so on. To compute the
determinant of a 10 X 10 matrix would require computing the determinant of
100 = 10 x 9x8Xx7x6x5x4x3x2 = 3,628800 1 x 1 matrices.
Fortunately ,there are better ways.

Let us compute the determinant of a reasonably sized matrix by hand.

A:{Z g]

det (A) = ad — be.

Theorem 15.4. Suppose

Then
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Proof of Theorem 15.4.

a b
d

’ = adet([d]) — bdet([c]) = ad — be

Example 15.5. Suppose that we have the 3 x 3 matrix

3 2 -1
A= |4 1 6
-3 -1 2
Then
3 2 -1
det (A) =|A| =1 4 1 6
-3 -1 2
1 6 4 6 4 1
R R P R

=3(1[2[ = 6|-1]) —2(4[2[ = 6|=3[) = (4]-1] = 1]=3])
=3(1(2) =6(=1)) =2 (4(2) = 6(=3)) = (4(=1) = 1(=3))
=24 5241

= -27
Theorem 15.6. Suppose
11 Q12 Q13

A= |an ax ax
a31 a3z 33

Then

det (A) = 11022033 + Q12023031 + 13021032 — G11023G32 — G12021G33 — A13022031



Proof of Theorem 15.6.

det (A) = an|A(11) | — a2 A (1]2) [ + a13|A (1]3) |
a9 G2 a1 Q22

azy asz

Q22 A23

+ a13
a3z Q33

= a1 — a12

3
a31 33
= all(a22a33 - G23(132) - (112(@21(133 - a23a31) + 6113((121(132 - G22G31)

= 11022033 + Q12023031 + 13021032 — Q11023032 — (12021033 — (13022031

O

15.2 Computing Determinants

Theorem 15.7 (Determinant Expansion about Rows). Suppose that A is a square
matrix of size n. Then for 1 < 1 < n, we have:

det (A) = (=1)""" [A];; det (A (i[1)) + (—1)""* [A],, det (A (i[2))
+ (1) [A] 5 det (A (i]3)) + -+ + (=1)"" [A];, det (A (i|n))

= Z(—l)i(—l)inj det (A(i[7))

which is known as expansion along the i-th row.

The coeffient (—1)"(—1) means that the sign in front of each term of the
expansion is equal to sign at the (4, j)-entry of the following matrix:

Proof of Determinant Expansion about Rows. Skip the proof. If you are inter-
ested, see Beezer, p.266. O]

Theorem 15.8 (Determinant of the Transpose). Suppose that A is a square matrix.
Then det (A*) = det (A).

Proof of Determinant of the Transpose. Skip the proof. If you are interested, see
Beezer, p.267. ]



Theorem 15.9 (Determinant Expansion about Columns). Suppose that A is a
square matrix of size n. Then for 1 < 5 < n, we have:

det (A) = <_1)1+j [A]U det (A (HJ)) + (_1)2+j [A}Zj det (A (2’]))
+ (=17 [Aly; det (A (3]7)) + - + (1) [A],,; det (A (n5))
= Z(—l)j(—l)iz‘hj det (A(il7))
which is known as expansion about column j.

Proof of Determinant Expansion about Columns. Skip the proof. If you are inter-
ested, see Beezer, p.268. ]

Example 15.10. Let

-2 3 0 1
9 -2 0 1
A= 1 3 -2 -1
4 1 2 6

Then expanding about the fourth row yields,

30 1 -2 0 1
Al=A)(-D* -2 0 1 [+ 9 0 1
3 -2 —1 1 -2 -1

-2 3 1 -2 3 0

+(2) (=9 -2 1|{+6) (-9 -2 0

1 3 -1 1 3 -2

= (=4)(10) + (1)(=22) + (=2)(61) + 6(46) = 92

Expanding about column 3 gives

9 -2 1 -2 3 1
Al = O)(-D)'" |1 3 =1+ (O)(-1)*?*|1 3 —1|+
4 1 6 4 1 6
-2 3 1 -2 3 1
(=2)(=1)*3 19 -2 1|+@2)(-D*"|9 -2 1
4 1 6 1 3 -1

— 040+ (—2)(—107) 4 (—2)(61) = 92

Notice how much easier the second computation was. By choosing to expand
about the third column, we have two entries that are zero, so two 3 x 3 determinants
need not be computed at all!



When a matrix has all zeros above (or below) the diagonal, exploiting the zeros
by expanding about the proper row or column makes computing a determinant

insanely easy.

Theorem 15.11. Suppose A is upper triangular matrix, i.e.

det (A) = a11Q922 * **

-Cl11
0
A=10
i 0
Then
Proof of Theorem 15.11.
Q22 Q23
O as3
det (A) = ay; det
0 0
ass
= ajjag det :
0

= 11022 * * * Qpp

12

22
0

ann

A2p,

ais
23
as3

Q1n
A2n,
a3n

expand along the first column.

expand along the first column.

Theorem 15.12. Suppose A is lower triangular matrix, i.e.

Then

det (A) = ajjags - -

a11
21
a3

0
22
a32

0

)

Ay -



Example 15.13. Suppose

2 3 -1 3 3
0O -1 5 2 -1
T'=10 0 3 9 2
0o 0 0 -1 3
0O 0 0 0 35

Then, det(T) = 2(—1)(3)(=1)(5) = 30.

When you consult other texts in your study of determinants, you may run into
the terms minor and cofactor, especially in a discussion centered on expansion
about rows and columns. We have chosen not to make these definitions formally
since we have been able to get along without them. However, informally, a minor
is a determinant of a submatrix, specifically det (A (i|j)) and is usually referenced
as the minor of [A], ;- A cofactor is a signed minor, specifically the cofactor of
[A]i; is (=1)"7 det (A (il 1)).

15.3 Properties of Determinants of Matrices

Theorem 15.14 (Determinant for Row or Column Multiples). Suppose that A is
a square matrix. Let B be the square matrix obtained from A by multiplying a

single row (say, row 1) by the scalar «, or by multiplying a single column by the
scalar . Then det (B) = avdet (A).

Proof of Determinant for Row or Column Multiples. Expand along row ¢, then

det (B) =Y (—1)"*[Bli det (B(i|k))

bl
—_

(—1)"" Al det (B(ilk))

a) (—1)**[Ali det (B(ilk))

adet(A).

Example 15.15.

2 2 11
det[3 4}:2-det[ 1:2-1:2.
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Example 15.16. Suppose

ailz aiz Aas
A= |an ax as
az1p azz2 az3

with det (A) = 1. Find

2(111 3@12 4&13
2@21 3@22 4@23 .
2a31 3azy 4ass

The above is

ayp 3aiz 4ags 1
=2 a921 3@22 4(123 (501)
as; 3asp 4ass
an a2 4as 1

=2x3 o1 Q922 4@23 (—CQ)

4 3
asp aso a33

a1 Q12 Q13 1
=2x3x4|ayy age as (ZCB)

a31 a3z 33

=24.

Corollary 15.17 (Determinant with Zero Row or Column). Suppose that A is a
square matrix with a row where every entry is zero, or a column where every entry
is zero. Then det (A) = 0.

Proof of Determinant with Zero Row or Column. This follows from Theorem 15.14
(Determinant for Row or Column Multiples) with a = 0. L]

Theorem 15.18 (Determinant for Row or Column Swap). Suppose that A is a
square matrix. Let B be the square matrix obtained from A by interchanging
the location of two rows, or interchanging the location of two columns. Then

det (B) = —det (A).

Proof of Determinant for Row or Column Swap. Skip the proof. If you are inter-
ested, see Beezer p.273. O]


https://www.math.cuhk.edu.hk/~pschan/cranach/?xml=https://raw.githubusercontent.com/pschan-gh/math1030/devel/lec15.xml&slide=15&item=15.14
https://www.math.cuhk.edu.hk/~pschan/cranach/?xml=https://raw.githubusercontent.com/pschan-gh/math1030/devel/lec15.xml&slide=15&item=15.14

Example 15.19. Suppose

O 0 O Q14

A _ 0 0 923 Q924
0 aszx asz an

41 G4 A43 Q44

Find det (A).

Q41 Q42 Q43 QA44q
det(A)=—| O O am anp o p g

0 asx ass as
0 0 0 a14

a41 Q42 A43 A44
0 asp asz an
0 0 a3 axn
0 0 0 ay

(R2 e Rg)

= A41032023014.

Corollary 15.20 (Determinant with Equal Rows or Columns). Suppose that A is
a square matrix with two equal rows, or two equal columns. Then det (A) = 0.

Proof of Determinant with Equal Rows or Columns. Switching the two equal rows
(or columns) gives the same matrix A, so by the previous theorem we have:

det(A) = —det(A)

It follows that det(A) = 0.

Theorem 15.21. Let A;, B, C be row vectors with n components. Then:

[ A ] [ A, ] [ A, ]
A Ay A

det | B4+ C| =det| B | +det| C
Az—l Ai—l Az—l
A, Ay | | Ay |




Similarly, for column vectors A;, B, C in R", we have:

det [Aq| - [Ai_1|B+ ClAjp] -+ |A,] = det [Ay] - |Ai1|B|Aj] - [Ay)]
+ det [Aq] - - [Ai1[ClAi] - - - [Ay]

Proof of Theorem 15.21. Expand along row  (or column 7). [

Theorem 15.22 (Determinant for Row or Column Multiples and Addition). Sup-
pose that A is a square matrix. Let B be the square matrix obtained from A by
multiplying a row by the scalar o and then adding it to another row, or by mul-
tiplying a column by the scalar o and then adding it to another column. Then

det (B) = det (A).

Proof of Determinant for Row or Column Multiples and Addition. Suppose the row
operation is al?; + R;, expand along row j. For details, see Beezer p.275. U

Example 15.23. Suppose we want to compute the determinant of the 4 x 4 matrix

2 0 2 3
1 3 -1 1
A= -1 1 -1 2
3 5 4 0

We will perform a sequence of row operations on this matrix, shooting for an up-
per triangular matrix, whose determinant will be simply the product of its diagonal
entries. For each row operation, we will track the effect on the determinant via
Theorem Theorem 15.18 (Determinant for Row or Column Swap) Theorem The-
orem 15.14 (Determinant for Row or Column Multiples) and Theorem Theorem
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15.22 (Determinant for Row or Column Multiples and Addition).

0
3
1
5

2
-1
-1

4

1 3
2 0 2
-1 1
3 5 4

1 3
0 —6
-1 1
3 5

w o O =
W

S O O
H~

o O O
H~

3 -1
1 -1
4 =2
-4 7

S O O

o O O

12
3

o O O
S O = W

-1
-1
2
1

> O O =
> O = W

-1

—1

—1

I
\\}
O W = =

-1 1

3

2
0

4

O N ==

4

3 -1

11
—11

1
-2
11

D)

(Rl < RQ)

(—2R1 + Rz)

(1R; + R3)

(—3R1 + Ry)

(1R3 + R»)

(—4Ry + Rs)

(—4Rs5 + Ry)

(—1R3 + Ry)


https://www.math.cuhk.edu.hk/~pschan/cranach/?xml=https://raw.githubusercontent.com/pschan-gh/math1030/devel/lec15.xml&slide=20&item=15.22
https://www.math.cuhk.edu.hk/~pschan/cranach/?xml=https://raw.githubusercontent.com/pschan-gh/math1030/devel/lec15.xml&slide=20&item=15.22

Example 15.24. Compute

1 aq a9 as
I a+b as as
1 ap as + by as
1 aq a9 az + bs.

The above is

1 a1 ag as
0 b0 0 O
0 0 b O
0 0 0 b3

- blbgbg

15.4 Examples

Example 15.25. Compute

1 1
=0 b—a
_‘b—a c—a
bb—a) c(c—a)
_(b_CL)i c(cc_—iz)
—(b-a)c—a)|,
—(b—

0 b(b—a) clc—a)

(—=1R; + Ry, —1Ry + R3, —1R; + Ry)

(upper triangular matrix )

1 1
a b ¢
a2 2
1
C (—(IRQ + R5)

1

cC—a

(—aRl + RQ)

(expand along the first column)

(pull out b — a from column 1)

(pull out ¢ — a from column 2)

a)(c—a)(c—0).
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More generally:

Example 15.26 (Vandermonde Determinant). Let

11 1 e 1]
aq a9 as tee Qp,
V.= at &3 a; a%
a?.—Q agL‘—2 ag:—2 L az.—Q
_arlz—l ag—l a'g—l . azfl_

1. det(V,,) = det(V,,_1) TI7, (an — as).
2. det(Vy,) = [1<icjenla; —a;) forn > 2.

Proof of Vandermonde Determinant. 1. Performing the row operations:

_aan—l + Rna _aan—Q + Rn—la sy _aan + RQa
we have: det V,, =
1 1 1 o1
a; — Qy, Ay — Qy, as — Gy, - 0
a% — a0, a% — QoQy, a% — asa, 0
n—2 n—3 n—2 n—3 n—2 n—3
ay l—al 2an s 1—a2 2an as 1—a3 2an 0
n— n— n— n— n— n—
ay —aj ay ~ —ay “a, a3  —aj ap 0
(expanding along the last column)
a1 — Gp a2 — Gp as — Gp
as(as —a,)  asz(as — ay)

= (-

(pull out factor a; —a,, from column 1, a; —a,, from column 2, ....,

from columnn — 1)

al(al - an)

al a1 — an) ay (az —an) al*(az — an)
al(ar —a,) ay *(az —ay) a3 *(az — ay)

1 1

a1 a2

_ 2 2

=(=1)"Yay — an)(ag — ap) -+ (@n_1 —a,)| @1
agL‘—Z ag.—2

13




= (ap —ay) - (an — ap_y) det(V,_1) = det(V,,_1) H(an — a;).

2. Again by mathematical induction:
Step 1 When n = 2,

1 1

= ag — aq.
a;  as 2 1

So the formula is valid for n = 2.

Step 2 Suppose the statement is true for n = k£, i.e.

det(Vi) = [ (a;—an)

1<i<j<k

Thenforn =%k +1

k
det(Viy1) = det(Vi) [ [ (a1 — a:)
=1

k
= H j — Q4 Hak-i-l_a'z
=1

1<i<j<k

1<1<j5<n

The formula is valid forn = k + 1.

Step 3 By mathematical induction, the formula is valid for all n > 2. Or
without mathematical induction, you can simple repeat the steps again and
again until n = 2.

]

Reference: https://en.wikipedia.org/wiki/Vandermonde_matrix
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Example 15.27. Compute

11111
2.2 1 2 2
det(A)=1]1 2 1 2 3
11132
1111 4

By —1R1 + RQ, —1R1 + R3, —1R1 + R4, —1R1 + R5, the above is

SO O ==
SO R =
OO O DO =
O~ =
W R N =

Expand along column 3, the above is

1111
011 2
(—1) ><1><0021 I1x1x2x3=6.
000 3
Example 15.28. Compute

a1 1 1
1 a1l 1
det (A) = 11 a1
111 a

By —1R; + Ry, —1Ry + R3, —1R; + Ry, the above is

a 1 1 1
l—a a-—1 0 0
1—a 0 a—1 0
1—a 0 0 a—1

Take out the common factor ¢ — 1 of row 2, row 3 and row 4, the above is

O = O
—_—o O

1
1
-1 0
0



a+3 0 0 O
3l =1 1 0 0
:(a—l) _1 0 1 0 (—1R4+R1,—1R3—|—Rl,—1R2+R1)
-1 0 0 1
= (a+3)(a—1)°.
Example 15.29. Let
a1x Qa2 Q13
A= |an axn axs
a31 a3z (33
b1 bio
B = .
|:b21 b22}
Let
an a2 aiz 0 0
A Oy az az a0 0
C:O B:a31a32a330 0
23 0 0 0 by b
0 0 0 bgl b22
Show that

det (C) = det (A) det (B).
Expand C' along the last row, det (C') =

a;n aiz aiz 0 a;n a2 az 0

(_1)5+4b Q21 Q22 A23 0 +<—1)5+5b o1 Q922 Q923 0
as; aspx asz 0 as; asx asz 0

0 0 0 b9 0 0 0 by

For each 4 x 4 submatrix, expand along the last row, the above is

a1; aiz2 i3 @11 diz2 13

5+4 4+4 5+5 4+4
(—1) 521(—1) bia [a21 a2 ass +(—1) 522(—1) bii |aa1 a2 ags
31 Aaz2 ass a31 dazz G33

= (bllbgg - bglblg) det (A) = det (A) det (B) .

Remark : The result is also valid when A is a square matrix of size n and B is a
square matrix of size m.
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15.5 More properties of determinants

Corollary 15.30. 1. Let I, 2™ J then det (J) = —1.

2. Let I, 25 J, then det (J) =«

3. Let I, “E19 7 then det (J) = 1.

Corollary 15.31. Let A be a square matrix, apply row operation on A and obtain
a new matrix B. Let J be obtained by applying the same row operation on I,.. By
lecture 13, B = JA. Then det (B) = det (JA) = det (J) det (A).

Theorem 15.32. A is nonsingular if and only if det (A) # 0.

Proof of Theorem 15.32. Let B be the RREF of an n x n square matrix A. Then
A is nonsingular if and only if B = I,,.

Moreover, if A is singular, then B must contain a zero row, which implies that
det(B) = 0.

By Theorem 6.26, there is a sequence of elementary matrices .J;, correspond-
ing to row operations, such that:

Jg- - Jo 1A= B.
Applying the previous corollary repeatedly, we have:
det(Jy) - - - det(Jy) det(J;) det(A) = det(B).
Since, each det(J;) # 0, we have:
det(A) # 0 < det(B) # 0.

On the other hand, B is an n x n RREF matrix, so det(B) # 0 if and only if
B = I,,. We conclude that A is nonsingular if and only if det(A) # 0. O

Corollary 15.33. Let A be an n x n matrix. The following statements are equiv-
alent:

e det A #N0.
o The columns of A are linearly independent.

e The columns of A form a basis of R".

17
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Example 15.34. Find z such that

2101
0111
A= 100 =
02 3 1
is singular.
Expand along the first column
111 1 01
det (A)=2]0 0 x|+ |1 1 1
2 31 2 31
Expand along the second row
111 11
0 0 z|=—2x 9 3| =%
2 31
Finally
1 01
11 1j=-1
2 31
Hence

det (A) = =2z — 1.
It is singular if and only if det (A) = 0 if and only if z = —
Example 15.35. Let

1
3

a b ¢ d
e 00 O
A_fOOO
g 0 0 0
find det (A).
Method 1
0 0O e 00 e 00 e
al0 0 Ol—=0b(f O Oj+c|f O O|—=d|f
0 00 g 0 0 g 00 g

o O O

o O O



In each of the above matrices, there is one zero columns, so all the determinants
of the 3 x 3 submatrices must be zero. Therefore the above is

a0 — b0+ c0 — d0 = 0.

Method 2 If ¢ = 0, then column 3 is the zero column, so det (A) = 0. Other-
wise

So A is singular and hence det (A) = 0.

Theorem 15.36. If A and B are square matrices. Then
det (AB) = det (A) det (B) .

Proof of Theorem 15.36. Suppose A or B is singular. Then, accordingly det(A)
or det(B) is equal to zero. By Theorem 7.21 (Nonsingular Product has Nonsin-
gular Terms) the matrix AB is also singular, hence:

det(AB) = 0 = det(A) det(B).

If both A and B are nonsingular, then there are elementary matrices, .J; and
K, coresponding to row operations, such that:

A= NJy- - Jily,
B =K K- K]I,.
This implies that:
AB = (JiJy- - Jp) (K 1 Ky -+ K)) I,
By Corollary 15.31, we have:

det(A) = det(Jy) det(Jz) - - - det(J),
det(B) = det(K) det(Ky) - - - det(K;),
det(AB) = det(Jy) det(Js) - - - det(Jg)
- det(K) det(Ky) - - - det(K;).

Hence, det(AB) = det(A) det(B). O


https://www.math.cuhk.edu.hk/~pschan/cranach/?xml=https://raw.githubusercontent.com/pschan-gh/math1030/devel/lec7.xml&slide=22&item=7.21
https://www.math.cuhk.edu.hk/~pschan/cranach/?xml=https://raw.githubusercontent.com/pschan-gh/math1030/devel/lec7.xml&slide=22&item=7.21
https://www.math.cuhk.edu.hk/~pschan/cranach/?xml=https://raw.githubusercontent.com/pschan-gh/math1030/devel/lec15.xml&slide=27&item=15.31

Theorem 15.37. If det (A) # O, then A is invertible and

1
~ det (A)

Proof of Theorem 15.37. It follows from Theorem 15.32 that A~! exists. The
identity (I5.1)) then follows from:

AAT =1,
and Theorem 15.36. O]

Theorem 15.38 (Cramers rule). Let A be a invertible square matrix of size n. Let
b € R™ Let My, be the square matrix by replacing the k-th column of A by b. If

det (A7) . (15.1)

X1

X2
X =

Ip
is a solution of Ax = b, then

det (A)

T —
where k =1,...,n.

Proof of Cramer’s rule. Because A is invertible, Ax = b has a unique solution
x. Let X} be matrix obtained from the identity matrix /,, by replacing column &
with x.

Since:

we have:
AXy = M.
Expanding X} along the row k, we have

det (Xy) = xpdet (I,-1) = .

So
det (My) = det (AX}) = det (A) det (X}) = det (A) .
Therefore
T — det (Mk)
P det (A)
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Alternatively,

T

Ta| . . .
Proof of Cramer’s rule. A vector x = | . | is a solution to Ax = b if and only

Tn
if:
1Ay +293A+ - +2,A, =Db.

Let k be any integer such that 1 < k£ < n. Let M, be the matrix obtained from A
by replacing the column A with b.

Then:
det My, = [A1[As| -+ | A1+ 2As+ -+ 3, A, |- |A],
k-th column
which by Theorem 15.21 is equal to:
> widet[A|Ay] - | Al Al

i=1
k-th column

For each i # k, observe that the matrix:
[A]Ag]---| A, |- A
~—
k-th column

has two columns which are equal to A;, hence its determinant is equal to 0, by
Corollary 15.20 (Determinant with Equal Rows or Columns).
It follows that:

det My, = xp det[A|As|---| Ay |-+ |A,] = xp det A.
—~—
k-th column

Hence,
o det M, k

Tk = det A
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Example 15.39. Using Cramer’s rule to solve the following system of linear equa-
tion.
r1+ 229 + 313 =2
T +x3 = 3

$1+$2—$3:1

Let
1 2 3 2
A=11 0 1 b= |3
11 -1 1
det (A) =6
2 2 3
M1 =1(3 0 1 ,det (Ml) = 15.
11 -1
det(M;) 15 5
rTH == — = —,
YT odet(A) 6 2
1 2 3
My=|1 3 1|, det(M)=—6.
11 -1
d _
Ty = ot (Ma) _ 0 = —1.
det (A) 6
1 2 2
M3 =11 0 3 ,det (Mg) =3
111
det (Mg) 3
T3 = ====
det (4) 6 2
Thus
T g
To| = —1
T3 %

1s a solution.

22



Theorem 15.40 (Formula for inverse). Suppose A is an invertible matrix. Then

(=1)™ det (A(il))
det (A)

(A1 =

Pay attention to the order of the indexes i and .

Proof of Formula for inverse. Let B = A~!. Let B; be the i-th column of B.
Then

ABZ =e€;.

The vector B; is a solution of Ax = e;. We can use the previous theorem to find
B;. Let M; be the square matrix by replacing the j-th column of A by e;. Expand
along the j-th column of M;, we have

det (M;) = (=1)""7 det (M;(il5)) = (—1)"* det (A(il5)) -
Then the j-th coordinate of B; is given by

oy det (M) (=1)™ det (A(il)))
Bii =Bl =) = det (A)

Example 15.41. By the above formula, find the inverse of

1 2 3
A=1]10 1],
1 1 -1
det (A) =6
aan =] L detaa) = -1,
Aa =) Ll deraqu) = -2
A =, O, detaa) =1,
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A = |

P ey =
A@R) =7 Ol det(A@2) = 4,

A(2]3) = E ﬂ det (A(2]3)) = —1,

AB|1) = {g ﬂ det (A(3|1)) = 2.

A(3[2) = 1 det (A(3]2)) = —2,

IH C)~3I

A(3[3) = 1 Sl det(ABR) = 2.
[ det(A(1[1)  —det (A(2]1)  det(A(3[1))

A= L Zdet ((A(1]2)) det (A212)  —det (A(3]2))
det (4) [ det (A(1]3)  —det (A(23))  det (A(3[3))

15.6 More examples

Example 15.42. Let A, be a n X n matrix

rz 1
1 =z
1 1

DR I e
S — = = =
S

Find det(A4,,). n
Add columns C5, C5, ..., C, to Cy:
r+(n—1)
x4+ (n—1)
det(A,) = | z+ (n—1)

—_— 8 =
K8 = =
K8 = ==

[E
[E

x—l—(?:z—l)

N J/

24 "

-1 5
6 6
1 _2
3 3
1 1
6 6

WO =00 =



=(x+(n—-1))

—_

11

1

1
1
1
1
x

J/

Performing the following sequence of column opgrations:

—Cy + Cy, —Cy + C, ...

we conclude that the determinant is equal to:

(z+n—1)

N

1
1
1

1

0
r—1
0

0

0
0
r—1

0

0
0
0

0

r—1

J/

’ _Cl + Cn7

n=(x+n-1)(x—-1)""

The last step follows by the faa that the matrix on the left hand side is the lower
triangular matrix.

Example 15.43. Let B,, be a n x n matrix in the form

_1—CL1

—1
0

1

0

a2
—1

0

0
as
1—CL3

0
0

0
0
0

1- An—1
-1

=}

Qp
1—a,

1. Show that det(B,) = det(B,_1) + (—=1)"(a1az - - - ay).

2. Hence show det(B,,) =1+ Y7 (—1)(a1as - - - ;).

Solution.

1. Adding rows Ry, ...

1 — aq a9
—1 1—(12

0 -1

0 0

—aq 0

0
as
1—&3
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0
0
0

11— ap—1

0

, R,_1 to R, we have: det(B,,)

0
0
0

Qn

1




Expand along the last row, the determinant above is equal to:

as 0 0 0
1—612 as 0 0
(_1)n+1(_a1> -1 1_a3 0 0 +
0 0 l—ay,_1 a,
1 — a1 (05} 0 0
-1 1 — a2 as 0
0 0 0 e 1l —ap

The first matrix is an lower triangular matrix, so the determinant is the prod-
uct of the diagonal entries, the second matrix is B,,_.

= (=1)"(ay---a,)+det(B,_1).

. We prove the result by mathematical induction :
Step 1 : The formula is valid for n = 1: det(B;) = 1 — a;.
Step 2 : Suppose the formula is true for n = k, we want to show that the

formula is true for n = k + 1:

Bk+l = (—1)k+1(a1 e G]H_l) + det(Bk)

The formula is true forn = k + 1.

Step 3 : By mathematical induction, the formula is valid for all positive
integer.

Explanation : the formula is true for £ = 1, then it is true for k + 1 = 2, so
true for k + 1 = 3, etc. Hence true for all integers.
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Example 15.44. Let C), be a n x n matrix given by

1. Show that det(C,,) = a(z 4+ a)" ' + (z — a) det(C\,_1).

a a
a a
a a
—a T

4 7

2. Show that det(C;,) = 3 ((z + a)" + (z — a)").

Solution.
Then det(C,,) =
T a
—a
—a —a
—a —a

.

a
a
a

S

a

/

N

1. The last column can be written as

a 0

a 0

al 4+ 0

a T —a
T a
—-a

+ —a —a
—a —a

a 0
a 0
a 0
—a T —a

s

Then, performing the row operations:
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T a a a 1
—-a x a a 1
—-a —a =x a 1
—a —a —a —a 1
—1R,+ Ry,...,—1R,_1 + R,_1,




the determinant above is equal to:

r+a 2a 2 -+ 2a 0
0O z+4+a 2a --- 2a 0
a 0 0 x+a 2a 0
—a —a —a —a 1
r+a 2a 2 - 2a
0 r+a 2a - 2a
= (—1)"""a 0 0 x+a --- 2a n—1
0 0 0 e T Ha
(Expand along the last column.) et
=a(z+a)""

(Determinant of upper triangular matrix.)

For the second determinant,

\
r a a a 0
—-a T a a 0
—a —a = a 0 \'n
—-a —a —a -+ —a Tr—a
/|
TV
n
r a a a
—a x a a
=(r—a)| - —a z - a n — 1 (expand along the last column)
-a —a —a -+ T—a

(Expand al(;ng the last cm}‘ﬁlmn.)
= (z — a)det(Cy—1).
Adding the results
det(C,) = a(x +a)" " + (z — a) det(C,,_1).
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2. We will prove the formula by induction.

Step1: Whenn =1, C; = [z], det(Ch) = = = L((z + a) + (z — a)). So
the formula is valid for n = 1.

Step 2 : Suppose the formula is valid for n = k£, i.e.
det(C) — %((x +a)f + (2 — a)P).

Then forn =k + 1,

det(Cry1) = a(z + a)* + (x — a) det(Cy)

=a(z+a)" + (z — a)%((x +a)*" + (z — a)¥)
= %(x +a)*(2a +z — a) + %(m — a)"!
= (@ + ) + (- )
= %((m +a)" + (z —a)").

So the formula is valid forn = k + 1.

Step 3 : By mathematical induction, the formula is valid for all integers
n > 1.

15.7 Properties of Determinant (summary)

Let A be a square matrix with size n.

1.

a b
d

’:ad—bc.

ailz a2 ais
A= a1 ax a3| = a11a2a33 + Q12023031 + Q13021032 — Q11023032 — Q12021033 — 13022031
az1 asz Gas3

3. Expand along row ¢

det (A) = (—1)""" [A];; det (A (i]1)) + (=1)"" [A] , det (A (i[2))
+ (1) [A] 5 det (A (i]3)) + - + (=1)"" [A], det (A (i[n))
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10.

11.

. Expand along column j

det (A) = (=1)"* [A],; det (A (1]7)) + (=1)** [A],; det (A (2]))
+(=1)*7 [A]; det (A (3])) + -+ + (=1)"" [A],,; det (A (n]))

. det (A") = det (A)

. Determinant of upper/lower triangular matrix.

a1 @12 iz - Ain
0 ax a3 -+ a
0 0 asz -+ A4A3p| = 11492 * * * Qpp-
0 0 0 -+ au
a1 0 0 e 0
a21 A29 0 e 0
a31 a3z aAzz - 0| = 11099 * * * Qpp.-
ap1 Ap2 Qap3z - Ann

Suppose that A is a square matrix with a row where every entry is zero, or
a column where every entry is zero. Then det (A) = 0.

Suppose that A is a square matrix with two equal rows, or two equal columns,
ie., R; = Rjor C; = C, fori # j. Then det (4) = 0.

Let B be the square matrix obtained from A by interchanging the location
of two rows, or interchanging the location of two columns, i.e., I?; <+ R; or

C; <> Cj, i # j. Then det (B) = — det (A).

Let B be the square matrix obtained from A by multiplying a single row
(say, row 7) by the scalar o, or by multiplying a single column by the scalar
a, i.e., «R; or aC;. Then det (B) = adet (A).

Let B be the square matrix obtained from A by multiplying a row by the
scalar o and then adding it to another row, or by multiplying a column by
the scalar « and then adding it to another column, i.e., «R; + R, or aC; 4 C;
for i # j. Then det (B) = det (A).
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12.

a11 Q12
Qi—1.1 Ai—1.2
b1 + C1 b2 + Co
Q41,1 Qj41,2
(07951 an2
Similarly
a1
a1
an1
a1p - Q14-1
Q21 -+ Q241
Ap1 = Apg—1

Ain a1 a2
Qi—1,n Ai—11 Qi—12
bn +cy = bl b2
Qit1n Ai41,1 Q41,2

Ann an1 An2

ai—1 bi+c arip

azi—1 ba+co agip

Api—1 bn"_cn Qpi+1

by Q1,541 *°  Qin 11
by a2i4+1 = Qa2 21
. . . +

bn Ap i1 Qpn Qn1

13. If A and B are square matrices, then

det (AB) = det (A) det (B) .
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Q1n ai 12
Qi—1.n Qi—1,1 Q;—12
bn + C1 Co
Ai+1,n Ai+1,1 Qi+1,2
Ann an1 An2
A1n
Aon
ann
ari—1 C1 Q141
Ag;—-1 C2 Q2441
Qpi—1 Cn QAnitl

Q1n
Q2n

Q1n

Ai—1.n
Cn

Qit1,n

ann
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