MATH 1030 Chapter 14

The lecture is based on Beezer, A first course in Linear algebra. Ver 3.5 Down-
loadable at http://linear.ups.edu/download.html .

The print version can be downloaded at http://linear.ups.edu/download/fcla-
3.50-print.pdf .

14.1 Dimension

Definition 14.1 (Dimension). Let /' be a vector space.

Suppose a finite set of vectors {vy,...,v;} is a basis for V.

Then, we say that V' is a finite dimensional vector space.

The number ¢ (namely the number of vectors in the basis) is called the dimen-
sion of V.

The dimension of the zero vector space {0} is defined to be 0.

Remark. It is a non-trivial fact that the dimension is well-defined, i.e., If both
{v1,...,vi} and {uy,...,u,} are bases for V, then s = t.

Theorem 14.2. Suppose that S = {v1, va, V3, ..., V;} is a finite set of vectors
which spans the vector space V. Then any set of t + 1 or more vectors from V is
linearly dependent.

Proof of Theorem 14.2. Letuy,us, ..., u,, be m vectors in V', where m >t + 1.
Let A = [vy|va|---|v]. Since S spans V, for every u; (1 < i < m) there exists
w; € R such that:

Aw,; = u;.

Now, consider the matrix:
B = [wy|wa| - |[Wy,).

This is a ¢ X m matrix. In particular, it has more columns than rows, due to the
assumption that m > ¢.
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Hence, the homogeneous linear system £S(B,0) has a non-trivial solution
x € R™. That is:
Bx =0.

The above equation implies that:
A(Bx)=A0=0.
By the associativity of matrix multiplication, we have:

A(Bx) = (AB) x.

On the other hand:
AB = Alwq|way|- -+ |[wp,]
= [u|ug| - - [uy)
Hence,
(AB)x =0
is equivalent to:
[wifug| - Jug)x =0

which is in turn equivalent to:
r1Uuy + ToUs + - - - Ty, = 0.

Since, x is not the zero vector, not all the z;’s are equal to zero. We conclude that
the vectors uy, uo, . . ., u,, are linearly dependent. O

Theorem 14.3. Suppose that V is a vector space with a finite basis B and a
second basis C.
Then B and C have the same size.

Proof of Theorem 14.3. Denote the size of B by t. If C' has > ¢ + 1 vectors, then
by the previous theorem, C' is linearly dependent, in contradiction to the condition
that C'is a basis.

By the same reasoning, the linearly independent set B must also not have more
vectors than C'.

So, B and C' have the same number of vectors. 0

Remark. The above theorem shows that the dimension is well-defined. No matter
which basis we choose, the size is always the same.



Proposition 14.4. Let S = {vy,...,v,} CR™. Then
dim Span S < n.

Proof of Proposition 14.4. By Theorem 13.22, there exists a subset 7" of S such
that 7" is a basis for Span S.

dim Span S = number of vectors in 7" < number of vectors in S = n.
O

Remark. Theorem 13.22 is valid if we replace R™ by F,,, M,,, or any finite
dimensional vector space.

Example 14.5.
dim R™ = m.

Corollary 14.6. Any set of n vectors in R™ are linearly dependent if n > m.

Proof of Corollary 14.6. This follows from Theorem 14.2 and the fact that R™ is
spanned by m vectors. [

Example 14.7. Math major only
dim M,,,,, = mn. See example 3.

Example 14.8. Math major only
dim P, = n + 1. See example 4.

Example 14.9. Math major only
Let S5 be the set of 2 x 2 symmetric matrices. For A € Sy,

I R R R R

We can show that:
10 01 00
r={[o o [V o) o 3}

is a basis for Sy. Hence dim S, = 3.

Example 14.10. Math major only
Let P be the set of all real polynomials. As {1, z, 2% 23, ...} is linearly inde-
pendent, so dim P does not exists (or we can write dim P = c0).

We have seen that every column space of a matrix has a basis. Does every
subspace of R™ have a basis?
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Lemma 14.11. Let V be a vector space and v, ..., vi,u € V.
Suppose S = {v1,...,vy} is linearly independent and u ¢ Span S. Then
S" ={v1,..., vy, u} is linearly independent.

Proof of Lemma 14.11. Let the relation of linear dependence of S’ be
a1vy+ -+ apve +au = 0.
Suppose a # 0, then

«
U= ——vy — - — —kvk € Span S.
o «a
Contradiction.

So oo = 0, then

avy + -+ agpvy = 0.

By the linear independence of S, o; = 0 for all <. Hence the above relation of
dependence of S’ is trivial. [l

Theorem 14.12. Let V' be a nonzero (i.e. contains nonzero vectors) subspace of
R™. (That is, V # {0}.)

Then, there exists a basis for V.

Proof of Theorem 14.12. Consider all nonempty linearly independent subsets S
of vectors in V. By Corollary 14.6, the size of any such .S is an integer between 1
and m.

Let n be the largest possible size of such sets, and let:

B ={vy1,va,...,V,}

be a nonempty linearly independent set of V' with size n. We claim that Span B =
V.

If not, then there exists u € V which does not belong to Span B, and by
Lemma 14.11 the set:

BUu={vy,vy,...,v,,u}

is an linearly indepedent set of size n 4 1, which contradicts the assumpion that n
is the maximum size of linearly independent subsets in V.

Hence, the linearly independent set B spans V/, and it follows that B is a basis
of V. ]
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Alternatively,

Proof of Theorem 14.12. Let V' be a nonzero vector space. Let v; be a nonzero
vector in V. If V' = Span {v;}, we can take S = {v;}. Then obviously {v;} is
linearly independent and hence S is a basis for V.

Otherwise, let vo € V but not in Span {v;}.

By the previous lemma, {v1, v, } is linearly independent. If V' = Span {vy, vo},
we can take S = {vy, va}.

So S is a basis for V.

Otherwise, let v3 € V but not in Span {vy, va}.

By the previous lemma, {v;, vo, v3} is linearly independent. Repeat the above
process, inductive we can define vy as following: If V' = Span {vy, va, ..., vs},
we can take S = {vy,va,..., Vi }.

Because {vy, Vs, ..., vy} is linearly independent, S is a basis for V.

Otherwise defined vy 1 & Span {vq, vy, ..., Vg}.

By the previous lemma, {vy, Vs, ..., vy} is linearly independent.

If the process stops, say at step k, i.e., V = Span {vy,va,... , Vi}.

Then we can take S = {vy,va, ..., Vi }.

Because {vy, vy, ..., vy} is linearly independent, it is a basis for V.

This completes the proof.

Otherwise, the process continues infinitely, in particular, we can take k£ =

m+ 1and V' # Span {vy,va, ..., Vy1} and {vy, v, ..., Vi 1} is linearly in-
dependent.

Since ({ey,...,e,}) = R™, by Theorem 14.2/the vectors {vy, Vo, ..., Vi1 }
are linearly dependent. Contradiction. [

Theorem 14.13. Suppose a vector space V' has dimension n. Then, any linearly
independent set with n vectors in 'V is a basis for V.

Theorem 14.14. Suppose a vector space V' has dimension n. Suppose S is a set
of n vectors in V which spans V (That is, (S) = V).
Then, S is a basis for V.

14.2 Rank and nullity of a matrix

Definition 14.15 (Nullity of a matrix). Suppose that A € M,,,,. Then the nullity
of A is the dimension of the null space of A, n (A) = dim(N(A)).
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Definition 14.16 (Rank of a matrix). Suppose that A € M,,,,. Then the rank of
A is the dimension of the column space of A, r (A) = dim(C(A)).

Example 14.17. Rank and nullity of a matrix
Let us compute the rank and nullity of

2 —4 -1 3 2 1 —4]
1 -2 0 0 4 0 1
A_|2 4 1 0 5 4 -8
1 -2 1 1 6 1 -3
2 —4 -1 1 4 -2 -1
-1 2 3 -1 6 3 -1

To do this, we will first row-reduce the matrix since that will help us determine
bases for the null space and column space.

(1] =2 0 0 4 0 1]
0 0 0 3 0 =2
0 0 0 [1] -1 0 -3
0 0 0 0 0 1
00 0 0 0 0 0
0 0 0 0 0 0 0]

From this row-equivalent matrix in reduced row-echelon form we record D =
{1, 3,4, 6}and F = {2, 5, 7}.

By Theorem 13.10 (Basis of the Column Space), for each index in D, we can
create a single basis vector. In fact 7 = {A;, A3, Ay, Ag} is a basis for C(A). In
total the basis will have 4 vectors, so the column space of A will have dimension
4 and we write r (A) = 4.

By Theorem 11.12, for each index in /', we can create a single basis vector.
In total the basis will have 3 vectors, so the null space of A will have dimension 3
and we write n (A) = 3. In fact:

(121 [-41 [-11)
1| | o 0
o] |-3] |2
R={10|,|11,]3
o] |1 0
o] o] [-1

Llo] o] [1]]

is a basis for N'(A).
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Theorem 14.18 (Computing rank and nullity). Suppose A € M,,,, and AR B,

Let r denote the number of pivot columns (= number of nonzero rows). Then
r(A)=randn(A)=n—r.

Proof of Computing rank and nullity. Let D = {d,, ..., d,} be the indexes of the
pivot columns of B. By Theorem 13.10 (Basis of the Column Space), {Ay,, ..., Aqy.}
is a basis for C(A). Sor (A) = r.

By Theorem 11.12, each free variable corresponding to a single basis vector
for the null space. So n (A) is the number of free variables = n — r. O

Corollary 14.19 (Dimension Formula). Suppose A € M,,,,, then
r(A)+n(A) =n.
Theorem 14.20. Let A be a m x n matrix. Then
r(A)=r(A".
Equivalently
dimC (A) =dimR(A).

Proof of Theorem 14.20. Let A KRR B

Let r denote the number of pivot columns (= number of nonzero rows).

Then by the above discussion » = r (A). By Theorem 13.19 (Basis for the
Row Space), the first 7 columns of B* form a basis for R(A) = C(A"). Hence

r = r (A"). This completes the proof. O
Let us take a look at the rank and nullity of a square matrix.

Example 14.21. The matrix

[0 4 -1 2 2 3 1
2 2 1 -1 0 —4 -3
2 -3 9 -3 9 -1 9
E=|-3 -4 9 4 -1 6 -2
-3 4 6 -2 5 9 —4
9 -3 8 -2 —4 2 4
8 2 2 9 3 0 9]
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is row-equivalent to the matrix in reduced row-echelon form,

HOOOO

ooooooH
oHooooo
]

OOOOOHO
OOOOHOO
OOOHOOO

Hoooooo

0
i 0

With n = 7 columns and = 7 nonzero rows tells us the rank is  (£) = 7 and
the nullity isn (F) =7 -7 = 0.

The value of either the nullity or the rank are enough to characterize a nonsin-
gular matrix.

Theorem 14.22 (Rank and Nullity of a Nonsingular Matrix). Suppose that A is a
square matrix of size n. The following are equivalent.

1. A is nonsingular.
2. The rank of Aisn, r (A) = n.
3. The nullity of A is zero, n (A) = 0.

Proof of Rank and Nullity of a Nonsingular Matrix. (1 = 2) If A is nonsingular
then C (A) = R".
If C (A) = R™, then the column space has dimension 7, so the rank of A is n.
(2 = 3) Suppose 7 (A) = n. Then the dimension formula gives

n(A)=n—r(A)

=0

(3 =-1) Suppose n (A) = 0, so a basis for the null space of A is the empty set.
This implies that V'(A) = {0} and hence A is nonsingular. O

With a new equivalence for a nonsingular matrix, we can update our list of
equivalences which now becomes a list requiring double digits to number.

Theorem 14.23. Suppose that A is a square matrix of size n. The following are
equivalent.

1. A is nonsingular.
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A row-reduces to the identity matrix.
The null space of A contains only the zero vector, N'(A) = {0}.

The linear system LS (A, b) has a unique solution for every possible choice
of b.

The columns of A are a linearly independent set.
A is invertible.

The column space of Ais R", C (A) = R".

The columns of A are a basis for R™.

The rank of Aisn, r (A) = n.

The nullity of A is zero, n (A) = 0.
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