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 Misconceptions about the Golden Ratio
 George Markowsky

 George Markowsky received his B.A. in mathematics from
 Columbia University and his M.A. and Ph.D in mathematics from
 Harvard University. From 1974 to 1984 he worked at IBM's
 Thomas J. Watson Research Center and since then he has been

 a member of the Computer Science Department at the Univer?
 sity of Maine. His primary mathematical interests are lattice
 theory, discrete mathematics and the applications of computers
 to mathematical problems. He became interested in the Golden
 Ratio as a result of preparing a talk on the subject for the
 Classics Club at the University.

 The golden ratio, also called by different authors the golden section [Cox], golden
 number [Fi4], golden mean [Lin], divine proportion [Hun], and division in extreme
 and mean ratios [Smi], has captured the popular imagination and is discussed in
 many books and articles. Generally, its mathematical properties are correctly
 stated, but much of what is presented about it in art, architecture, literature, and
 esthetics is false or seriously misleading. Unfortunately, these statements about the
 golden ratio have achieved the status of common knowledge and are widely
 repeated. Even current high school geometry textbooks such as [Ser] make many
 incorrect statements about the golden ratio.

 It would take a large book to document all the misinformation about the golden
 ratio, much of which is simply the repetition of the same errors by different
 authors. This paper discusses some of the most commonly repeated misconcep?
 tions.

 Some Mathematical Properties of the Golden Ratio

 The golden ratio arises from dividing a line segment so that the ratio of the whole
 segment to the larger piece is equal to the ratio of the larger piece to the smaller
 piece. This was called division in extreme and mean ratio by Euclid (see [Smi; Vol.
 II, p. 291] and [Her]).

 -> <-l-X->

 Figure 1
 Dividing a line segment according to the golden ratio

 Figure 1 shows a line segment of length 1 divided into two pieces. This division
 produces the golden ratio if (1/X) = X/(1 -X) or X2 +X- 1 = 0. The positive
 root of this equation is X = (-1 + ^5)/2 = 0.61803398875..., so the ratio 1/X =
 (l + ^5)/2? 1.61803398875... . Note that 1/X satisfies the equation Y2-Y-
 1 = 0.

 THE COLLEGE MATHEMATICS JOURNAL

This content downloaded from 137.189.49.162 on Thu, 21 Sep 2017 06:45:52 UTC
All use subject to http://about.jstor.org/terms



 Commonly, the Greek letters <i> [Hil; p. 78] or r [Bur; p. 128] are used to
 represent the golden ratio 1.61803... . I will use <J> throughout this paper to
 represent 1.61803 .... (Some authors use 0 to represent 0.618... .)

 The golden ratio appears in many geometrical constructions. For example, it
 appears as the ratio of a side to the base in the 72?, 72?, 36? isosceles triangle.
 Figure 2 shows an isosceles triangle ABC with two sides of length 1 and a base of
 length X. Bisecting angle A creates an isosceles triangle ADC similar to the first.
 Triangle ADB is also isosceles so that the lengths of BD, AD and AC are all
 equal to X. CD has length 1 -X, and since ABC and CAD are similar, l/X =
 X/(l-X) and X==l/0. From I/O it is easy to construct the 72?, 72?, 36?
 triangle and using this triangle it is easy to construct pentagons, pentagrams and
 decagons. For additional geometric constructions see [Odo] and [Rig; p. 29].

 l-X

 Figure 2
 Deriving the proportions of a 72?, 72?, 36? triangle

 The self-reproducing capability of the golden rectangle is also commonly cited.
 R is a golden rectangle with dimensions a > b if a/b = O. Removing a square with
 dimensions b X b from one end leaves a golden rectangle with dimensions b and
 {a - b). Figure 3(a) shows how constructing a sequence of smaller golden rectan?
 gles yields a spiral.

 Spirals can be constructed using rectangles of any ratio other than 1:1. Figure
 3(b) shows a sequence of smaller rectangles based on the ratio ^2:1. The smaller
 rectangles are created from the larger rectangles by dividing the larger rectangle
 exactly in half. Unlike Figure 3(a), every rectangle appearing in Figure 3(b) has
 exactly the same proportion. For a general discussion of such constructions and
 how they appear in living creatures see [Tho; pp. 181-187].

 For additional information on the golden ratio and its connection with the
 Fibonacci numbers see [Cov], [Cox], [Fo2], [Ga2], [Gru], [Knu] and [Rig]. Browsing
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 (a)  (b)

 Figure 3
 Spirals of rectangles

 through the Fibonacci Quarterly will also turn up much information about the
 golden ratio and the Fibonacci numbers.

 Misconception: The Name "Golden Ratio" Was Used in Antiquity

 Many people assume that the names "golden ratio" and "golden section" are very
 old. For example, Francois Lasserre states [Las; p. 76]

 The proportion, famous throughout antiquity, has been known since
 Leonardo da Vinci's time as the golden section.

 However, the use of the adjective "golden" in connection with 3> is a relatively
 modern one. Even the term "divine proportion" goes back only to the Renais?
 sance. David Eugene Smith [Smi; Vol. II, p. 291] states:

 The solution (of the problem of drawing 36? and 72? angles) is related to
 that of the division of a line in extreme and mean ratio.2 This was referred

 to by Proclus when he said that Eudoxus (c. 370 b.c.) 'greatly added to the
 number of the theorems which Plato originated regarding the section'
 This is the first trace that we have of this name for such a cutting of the
 line.

 In comparatively modern times the section appears first as 'divine
 proportion,'3 and then, in the 19th century,4 as the 'golden section.'

 In the above passage footnote 2 refers to Euclid, footnote 3 refers to Pacioli's
 book De Divina Proportione and footnote 4 refers to an 1844 article in the Archiv
 der Math, und Physik (IV, 15-22).

 D. H. Fowler [Fol; p. 146] gives the following history.

 It may surprise some people to find that the name 'golden section,' or
 more precisely, goldener Schnitt, for the division of a line AB at a point C
 such that AB ? CB =AC2, seems to appear in print for the first time in
 1835 in the book Die reine Elementar-Mathematik by Martin Ohm, the
 younger brother of the physicist Georg Simon Ohm. By 1849, it had
 reached the title of a book: Der allgemeine goldene Schnitt und sein
 Zusammenhang mit der harminischen Theilung by A. Wiegang. The first
 use in English appears to have been in the ninth edition of the Encyclope?
 dia Britannica (1875), in an article on Aesthetics by James Sully,.... The
 first English use in a purely mathematical context appears to be in G.
 Chrystal's Introduction to Algebra (1898).
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 The term "golden mean" was used in classical times to denote "the avoidance of
 excess in either direction" [Oxf]. Some authors (for example [Lin]) use the term
 "golden mean" to denote the golden ratio. The confusion of names might have led
 some people to conclude that "golden mean" was used in classical times to denote
 the golden ratio. For a detailed history of the golden ratio up until 1800 see [Her].

 How to Find the Golden Ratio

 Throughout this paper you will see passages from different works that assert the
 presence of the golden ratio in some work of art or architecture. In some cases,
 authors will draw golden rectangles that conveniently ignore parts of the object
 under consideration. In the absence of any clear criteria or standard methodology
 it is not surprising that they are able to detect the golden ratio.

 Following Martin Gardner's lead I will call such unsystematic searching for $
 the Pyramidology Fallacy. Pyramidologists use such numerical juggling to justify all
 sorts of claims concerning the dimensions of the Great Pyramid. Martin Gardner
 [Gal; pp. 177-8] describes this methodology.

 It is not difficult to understand how Smyth achieved these astonishing
 scientific and historical correspondences. If you set about measuring a
 complicated structure like the Pyramid, you will quickly have on hand a
 great abundance of lengths to play with. If you have sufficient patience to
 juggle them about in various ways, you are certain to come out with many
 figures which coincide with important historical dates or figures in the
 sciences. Since you are bound by no rules, it would be odd indeed if this
 search for Pyramid 'truths' failed to meet with considerable success.

 This process of juggling is rendered infinitely easier by two significant
 facts. (1) Measurements of various Pyramid lengths are far from estab?
 lished_(2) The figures which represent scientific truths are equally
 vague. The distance to the sun...varies considerably because the earth's
 path is not a circle but an ellipse. In such cases you have a wide choice of
 figures. You can use the earth's shortest distance to the sun, or the
 longest, or the mean.

 Martin Gardner proceeds to illustrate this principle in action by deriving
 "amazing numerical properties" of the Washington Monument based on statistics
 taken from an almanac. [Gal] is well worth reading.

 Another point overlooked by many golden ratio enthusiasts is the fact that
 measurements of real objects can only be approximations. Surfaces of real objects
 are not perfectly flat. Furthermore, it is necessary to specify the precision of any
 measurements and to realize that inaccuracies in measurements lead to greater
 inaccuracies in ratios. For example, a ?1% variation in the measurement of two
 lengths can lead to a roughly ?2% variation (0.99/1.01 ? 0.98 to 1.01/0.99 ? 1.02)
 in the ratio that is computed. Thus, someone eager to find the golden ratio
 somewhere can alter two numbers by ? 1% and alter their ratio by roughly ?2%.

 It is unfortunate that many writers on mathematical subjects treat measurements
 of real objects as if they were exact numbers. To discuss the claims about O
 intelligently it is necessary to create some guidelines for dealing with measure?
 ments and ratios.

 I propose the following guidelines. If measurements are given without an error
 range I will assume that they are accurate to within + 1%. In practice, error ranges
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 can be substantially better than this. For example, codes of practice for structural
 engineers call for tolerances of 0.2% (see [Ame; pp. 6-235, 6-236]). For measure?
 ments done with a ruler, a +1% error range represents roughly a 1/16" error in a
 6 inch object.

 As a consequence of this assumption, I will consider a claim for the presence of
 O to be at least reasonable if the computed ratio is within about 2% of O. To be
 more generous, I will expand these bounds a little and use the range 1.58 to 1.66.
 For convenience I refer to the range [1.58,1.66] as the acceptance range. If a ratio
 falls outside the acceptance range I will not consider it reasonable to claim that it
 is O.

 Even if a ratio falls within the acceptance range, this will not constitute
 automatic proof that O is present. This simply means that a claim has passed the
 first test and is worth investigating further. Since the acceptance range includes
 infinitely many numbers near O it is necessary to justify the claim that O is the
 preferred number. Some other ratio coincidentally near O might be the important
 one.

 I will compute ratios to at most 3 significant figures since we have an error range
 of about ?2%.

 Misconception: The Great Pyramid Was Designed to Conform to <I>

 A variety of people have looked for O in the dimensions of the Great Pyramid of
 Khufu (Cheops), which was built before 2500 b.c. According to [Tas; p. 12] the
 lengths of the sides of the base of the Great Pyramid range from 755.43 feet to
 756.08 feet, so it is not a perfect square. The average length is 755.79 feet. The
 height of the Great Pyramid is given as 481.4 feet. Every source that I have
 checked for the dimensions gives values within 1% of these (e.g. [Gil; p. 185]).
 Throughout this section I will use 755.79 feet as the length of the base and 481.4
 feet as the height.

 Some authors claim that the Great Pyramid was designed so that the ratio of the
 slant height of the pyramid to half the length of the base would be O. In Figure 4,
 h represents the height, b half the base, and s the slant height of the Great
 Pyramid. From the Pythagorean theorem s ? 612.01 feet. This gives a ratio of
 612.01/377.90 ~ 1.62 which differs from O by only 0.1%. Thus, we must examine
 the claims put forward for the presence of the golden ratio in the dimensions of
 the Great Pyramid.

 Figure 4
 A square pyramid
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 Quite a few books repeat the claim that O is present in the Great Pyramid by
 design. For example, Martin Gardner [Gal; p. 178], Herbert Westren Turnbull
 [Tur; p. 80] and David Burton repeat essentially the same story:

 Herodotus related in one passage that the Egyptian priests told him that
 the dimensions of the Great Pyramid were so chosen that the area of a
 square whose side was the height of the great pyramid equaled the area of
 a face triangle. [Bur; p. 62]

 This passage implies that the ratio of the slant height of a face to half the length
 of the base is the golden ratio. If the area of a face (Figure 4) is equal to the area
 of a square whose side is equal h we get the equation h2 = sb. The Pythagorean
 theorem yields h2 + b2 = s2. Let r = s/b. Dividing both equations by b2 and
 expressing the results in terms of r yields (h/b)2 = r and (h/b)2 + 1 = r2. Combin?
 ing these equations yields 0 = r2 ? r? 1, which has the golden ratio as its only
 positive root.

 Fischler [Fi2] and Gillings [Gil; pp. 238-239] have decided that this interpreta?
 tion of Herodotus is bogus. Fischler traces it to the book The Great Pyramid, Why
 Was It Built and Who Built It? which was published in 1859 by the pyramidologist
 John Taylor.

 Neither Gardner, Turnbull nor Burton specifies the location of this passage in
 Herodotus. I could find only one passage about the dimensions of the Great
 Pyramid in the translations of Herodotus's History (ca. 445-425 B.C.) by Rawlinson
 [He2] and Selincourt [Hel], and the commentaries of How and Wells [How].
 Rawlinson [He2] translates this passage, paragraph 124 of Book II, as follows.

 The Pyramid itself was twenty years in building. It is a square, eight
 hundred feet each way, and the height the same, built entirely of polished
 stone fitted together with the utmost care. The stones of which it is
 composed are none of them less than thirty feet in length.

 The Selincourt translation [Hel; p. 179] is similar. Herbert Westren Turnbull [Tur;
 p. 80] admits that his interpretation depends on "the slightest literal emendation."

 Figure 5 is the text from Herodotus [Hud; 11.124, lines 16-20], and a translation.
 The text in parentheses gives the antecedents for the pronouns, while the text in
 braces lists alternative readings for the word. The text does not support the story
 repeated by [Bur], [Gal] and [Tur].

 tt) ?6 T:vpa\xihi avrfi yj)6vov yeveaOai ?ikoo~l
 erea iroLevpLev^, ttjs kari Travraxfj [xeroyTrov eKaarov oktlo

 irkiOpa iovcrris rerpaydvov kcu v\jros Icrov, \i0ov be ^earov
 re kclI apixoajxivov ra fMaXtorra' ovbels t&v XLOuiV TpLrjKOvra
 TTob&v e\ao-(ru)v.

 (a) The original Greek.

 of which (the pyramid) is in each direction {the face; the front} each one 8 {100 feet; 10,000
 square feet} of being (the pyramid) {of four equal angles; square} and the height the same.

 (b) A word by word translation.

 Figure 5
 Herodotus (Herodoti Historiae, p. 124, II, lines 16-20)
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 Furthermore, Herodotus's figures about the dimensions of the Great Pyramid
 are wildly off. The Great Pyramid neither is nor was (it has lost some height over
 the years) anywhere near 800 feet tall nor 800 feet square at the base. Finally, we
 should note that Herodotus wrote roughly two millennia after the Great Pyramid
 was constructed.

 The distorted version of Herodotus's story makes little sense. Even the authors
 who quote it do not give a reason why the Egyptians would want to build a pyramid
 so that its height was the side of a square whose area is exactly the area of one of
 the faces. This idea sounds like something dreamt up to justify a coincidence
 rather than a realistic description of how the dimensions of the Great Pyramid
 were chosen. It does not appear that the Egyptians even knew of the existence of
 O much less incorporated it in their buildings (see [Gil; pp. 238-9]).

 Some authors [Men; p. 64, 73] have noticed that the ratio of the circumference
 of the Great Pyramid to the height is approximately 2tt. Using the figures given
 above yields 4 X 755.79/481.4 ? 6.28 which is well within ?2% of 2tt =
 6.2831853.... Now, of course, we must decide whether this is a coincidence or
 whether there is some reason why this ratio would be close to 277.

 A wide variety of theories have been advanced for the proportions of the
 Egyptian pyramids ranging from preserving a particular slope [Gil; pp. 185-187] to
 using rollers to measure horizontal distances and ropes to measure vertical
 distances [Men; pp. 64, 73]. [Fi5] gives a survey of these theories.

 Misconception: The Greeks Used <f> in the Parthenon

 Many sources (for example, [Ber; pp. 94-95], [Bro; p. Cll], [Hil; p. 79], [Hun; p.
 63], [Man; p. 168], [Mit; p. 1445], [Pap; p. 102]) claim that the Parthenon embodies
 the golden ratio in some way. To support this claim authors often include a figure
 like Figure 6 where the large rectangle enclosing the end view of the Parthenon-like
 temple is a golden rectangle. None of these authors is bothered by the fact that
 parts of the Parthenon are outside the golden rectangle.

 For example, Bergamini [Ber; pp. 94-95] presents a photograph and a line
 drawing to illustrate how the Parthenon fits snugly in a golden rectangle. The
 caption reads as follows.

 The Parthenon at Athens fits into a golden rectangle almost precisely once
 its ruined triangular pediment is drawn in. Though it incorporates many
 geometric balances, its builders in the fifth century b.c. probably had no
 conscious knowledge of the golden ratio.

 H. E. Huntley [Hun; p. 63] presents a figure that looks like Figure 6 with the
 caption,

 The Parthenon at Athens, built in the fifth century, b.c, one of the world's
 most famous structures. While its triangular pediment was still intact, its
 dimensions could be fitted almost exactly into a Golden Rectangle, as
 shown above. It stands therefore as another example of the aesthetic value
 of this particular shape.

 Similar statements can be found in the Random House Encyclopedia [Mit; p. 1445]
 and in this journal [Man; p. 168].

 The dimensions of the Parthenon vary from source to source probably because
 different authors are measuring between different points. With so many numbers
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 T~X  T~X  3 C  ^~X  3 c  3 c  x~c

 Figure 6
 The Parthenon supposedly fitting into a golden rectangle

 available a golden ratio enthusiast could choose whatever numbers gave the best
 result.

 Marvin Trachtenburg and Isabelle Hyman [Tra; p. 90] give the dimensions of the
 Parthenon as: height = 45 feet 1 inch; width = 101 feet, 3.75 inches; length = 228
 feet 1/8 inch. They do not specify the points between measurements. These
 numbers give the ratios width/height ~ 2.25 = 9/4 and length/width ~ 2.25 which
 are well outside the acceptance range. The reader might be struck by the fact that
 the ratio 2.25 appears as the ratio of width/height and length/width. Stuart
 Rossiter [Ros; p. 88] gives the height of the apex above the stylobate as 59 feet.
 This gives a ratio of 101/59 ~ 1.71 which also falls outside the acceptance range.
 According to Stuart Rossiter [Ros; p. 77]

 Its (the Propylaia's) axis is alined to that of the Parthenon, its width would
 have equalled the length of the temple, and like the Parthenon, its
 proportions are worked out in the ratio of 4:9, thus affording the only
 certain example before Hellenistic times of designing one building in
 direct relationship to another.

 More generally, Christine Flon [Flo; p. 131] dismisses much of the numerical
 mysticism about ancient structures with the following comment.

 On the basis of a small number of ancient texts, an effort has been made
 to find (in buildings sufficiently well preserved) a coherent system of
 proportions based on the golden number, pKir), or on the universal ratios
 of the Pythagoreans. Almost always, when all possible measurements have
 been taken, some system of geometric figures or some modular common
 denominator has come to light. However, the validity of this research
 remains uncertain: it is easy to overestimate the importance of an architec?
 tural speculation. It is not unlikely that some architects, in imitation of
 sculptures such as Polycleitos, should have wished to base their works on a
 strict system of ratios, but it would be wrong to generalize. In the
 conservative environment of ancient Greece, architectural activity was an
 empirical practice in which experience and intuition, that is to say 'mastery',
 played a large part.
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 Misconception: Many Painters, Including Leonardo da Vinci, Used *

 Golden ratio enthusiasts (for example [Ber; pp. 94,96], [Wil; p. 74]) also claim that
 Leonardo da Vinci used the golden ratio widely in his artistic works. In particular,
 Margaret F. Willerding [Wil; p. 74] states

 THE GOLDEN SECTION. As we look about us, we see many geometric
 patterns in nature, art, architecture, and even in such mundane things as
 tables, chairs, and cups and saucers. A very special pattern that we find in
 leaves around the stems of plants, in seashells, and in the arrangement of
 sunflower seeds is called the golden section. Leonardo da Vinci, one of the
 greatest geniuses of all times, stated proportions for the ideal figure in
 terms of this geometric pattern.

 Bergamini [Ber; p. 94] is more specific:

 SYMMETRY IN A FACE. In Leonardo da Vinci's drawing of an old
 man, probably a self-portrait, the artist has overlaid the picture with a
 square subdivided into rectangles, some of which approximate Golden
 Rectangles.

 The drawing Bergamini is describing is often reproduced (Figure 7). Since the
 rectangles in Figure 7 are very roughly drawn and do not have square corners it is
 difficult to see the significance of the claim that some rectangles "approximate"
 golden rectangles.

 Figure 7
 A drawing attributed to Leonardo da Vinci
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 The claims that Leonardo da Vinci used the golden ratio seem to be based on
 the fact that he illustrated Luca Pacioli's book De Diuina Proportione (1498, [Cla;
 p. 72]). The biographies of Leonardo da Vinci by Clark, Vallentin [Val], and
 Zammattio et al. [Zam] give no indication that he used the golden ratio in
 paintings or drawings not intended for Pacioli's book. Roger Fischler [Fi3; p. 31]
 claims that Pacioli "advocated a classical Vitruvian system, that is a system based
 on simple proportions," and did not advocate using the golden ratio for painting.

 Another painting often used (for example [Ber; p. 96], [Pap; p. 33]) to support
 the claim that Leonardo da Vinci used the golden ratio extensively in his art is a
 painting of St. Jerome ([Cla; plate 18]). For example, Bergamini states

 RECREATIONS of DA VINCI. St. Jerome, an unfinished canvas by
 Leonardo da Vinci painted about 1483, shows the great scholar with a lion
 lying at his feet. A Golden Rectangle (black overlay) fits so neatly around
 St. Jerome that some experts believe Leonardo purposely painted the
 figure to conform to those proportions. Such an approach would have
 been in keeping with the artist's ardent interest in mathematics. He took
 special delight in what he once described as 'geometrical recreations.'

 A glance at Figure 8 from [Ber; p. 96] is sufficient to show the flaws in the claims
 about this painting. The placement of the rectangle is somewhat arbitrary since the
 top does not touch the head. The rectangle is drawn using a very thick line. Its left
 side is tangent to a small fold of fabric and does not touch St. Jerome's body at any
 point. St. Jerome's right arm extends well past the left side of the superimposed
 rectangle. Finally, Leonardo da Vinci's acquaintance with the divine proportion
 dates from his meeting with Luca Pacioli, which occurred 13 years after he painted
 St. Jerome.

 Figure 8
 St. Jerome by Leonardo da Vinci

 Bergamini [Ber; pp. 94-97] also claims that Mondrian and Seurat used the
 golden ratio in their paintings. Again no exact data are given, but rectangles are
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 superimposed over sketches and paintings with no justification being given for the
 particular lines being drawn. Roger Fischler's [Fi3; p. 31] detailed analysis of
 Seurat's writings, sketches and paintings shows that Seurat did not use the golden
 ratio as a basis for his paintings. Fischler also discusses the alleged use of the
 golden ratio by other painters, including Le Corbusier [Fil].

 Misconception: The UN Building Embodies the Ratio <?>

 The UN Building is supposedly another example of the golden ratio. The Random
 House Encyclopedia [Mit; p. 1445] states

 The Greeks saw beauty in number and shape and their excitement with
 the golden ratio [5] manifested itself in their art and architecture and has
 been echoed by later civilizations in such places as Notre Dame in Paris,
 in the architecture of Le Corbusier, and in the UN building in New York.

 We can assume that the reference is to the Secretariat Building, the most
 prominent of the UN buildings in its New York complex. The UN gave these
 dimensions for the Secretariat Building over the phone: 505 feet high, 287 feet
 wide, and 72 feet thick. The only ratio even remotely close to 0 is height/width ~
 1.76 which is outside the acceptance range 1.58 to 1.66. [Mob; p. 301] gives the
 height of the Secretariat building as 550 feet, while [Whi] gives the height as 544
 feet. These values give height/width ratios of 1.92 and 1.90, which are even further
 away from O.

 The explanation of the differences in height from the people in the UN's
 Architectural Planning Section was that the building rises 505 feet from the main
 entrance level, but it extends 41 feet below this level. Thus, the height depends on
 whether you measure it from the west side of the building and street level (41 feet
 up) or whether you measure it from the east side at river level. At any rate, the
 Secretariat building does not appear to be designed on the basis of the golden
 ratio.

 To see how significant the golden ratio is in architecture I consulted several
 books on architecture. I could not find golden number, golden ratio, golden section
 or divine proportion in the indexes of [Mus] or [Tra]. An attack on the 0 cult in
 architecture is found in [Coo].

 Misconception: A Golden Rectangle Is the Most Esthetically
 Pleasing Rectangle

 A common claim is that the golden rectangle is in some way the most esthetically
 pleasing of all rectangles. For example,

 The golden rectangle was used by Greek architects in dimensions of their
 temples and other buildings. Psychologists have shown that most people
 will unconsciously select post cards, pictures, mirrors, and packages with
 these dimensions. For some reason, the golden rectangle holds the most
 artistic appeal. [Wil; p. 74]

 The Golden Rectangle is said to be one of the most visually satisfying of
 all geometric forms; [Ber; p. 94]

 Tastes may vary, but many people asked to select one of the shapes shown
 in Figure 13.5 for note-paper or for the frame of a picture would choose
 the third. It is not too square and not too elongated. [Lan; p. 222]
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This content downloaded from 137.189.49.162 on Thu, 21 Sep 2017 06:45:52 UTC
All use subject to http://about.jstor.org/terms



 Figure 9
 A reconstruction of Figure 13.5 from Land's book

 Figure 9 shows a computer reconstruction of Land's Figure 13.5.
 The New Columbia Encyclopedia [Har; p. 1103] in its article about the golden

 section states

 The Golden Rectangle, whose length and width are the segments of a line
 divided according to the Golden Section, occupies an important position
 in painting, sculpture, and architecture, because its proportions have long
 been considered the most attractive to the eye.

 Many of the claims about people's preference for the golden ratio seem to be
 based in large part on the experiments of Gustav Fechner performed in the 1860s.
 According to Leonard Zusne [Zus; p. 399],

 Fechner's procedure consisted in placing 10 rectangles before a subject
 and asking him to select the most pleasing rectangle. The rectangles varied
 in their height/length ratios from 1.00 (square) to .40_ The modal
 rectangle had a height/length ratio of .62, i.e., the golden section, with
 76% of all choices centering on three rectangles having the ratios .57, .62,
 and .67. While all other rectangles received less than 10% of the choices
 each, Fechner's results still indicated that many other rectangles besides
 the golden-section rectangle were considered the most pleasing by a fair
 number of subjects.

 The above statement can hardly be viewed as overwhelming evidence for the
 importance of the golden ratio in esthetics. Furthermore, Fechner's testing was
 rather limited since he offered only 10 choices. If the choices were presented
 ordered by increasing or decreasing proportion one could argue that people would
 tend to select the ones in the middle.

 H. R. Schiffman and D. J. Bobko [Sch; p. 102] state

 Research on the golden section proportion as an empirically demonstrable
 preference has most often been applied to the rectangle where the results,
 on the whole, are negative.

 Figures 10 and 11 can be used in your own tests to see whether people
 consistently select the golden ratio as the most pleasing ratio for a rectangle.
 Figure 10 shows 48 randomly arranged rectangles all having the same height but
 with their widths ranging from 0.4 times the height to 2.5 times the height.

 In Figure 11 the same 48 rectangles are arranged by increasing length when read
 from left to right and bottom to top. Figures 10 and 11 each contain two rectangles
 that qualify as golden rectangles, one having ratio 0 and the other having ratio
 I/O, and two rectangles that exhibit the ratio of the Parthenon: 9/4 and 4/9. See
 if you can identify them.
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 Figure 10

 Rectangles with ratios ranging from 0.4 to 2.5 in random order

 ?

 ? ???????

 ? nnnnnnn

 D D D D D D ? D
 Figure 11

 Rectangles with ratios ranging from 0.4 to 2.5 in linear order

 My informal experiments asking people attending my lectures to select the
 "most pleasing rectangle" suggest that people cannot find the golden rectangle in
 Figure 10. Furthermore, they generally select slightly different rectangles as the
 most pleasing rectangles when shown both Figure 10 and Figure 11.

 In the experiments I have conducted so far, the most commonly selected
 rectangle is one with a ratio of 1.83 (row 3, column 4 of Figure 10). In Figure 10,
 the numbers closest to <I>, I/O, 9/4 and 4/9 are locations (4,5), (5,4), (3,8) and
 (6,6) respectively where the first coordinate gives the row and the second coordi?
 nate gives the column. In Figure 11, the corresponding locations are (4,4), (6,6),
 (1,2) and (6,2).

 I also experimented with a collection of 48 rectangles with ratios ranging from
 1.6 to 1.7, which has convinced me that most people cannot see any differences
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 among the rectangles whose ratios are so close together. This strongly suggests that
 even if people do prefer certain rectangles, the only reasonable claim would be
 that people prefer ratios in a certain range. The various claims made about the
 esthetic importance of the golden ratio seem to be without foundation.

 Misconception: The Human Body Exhibits <?>

 Some authors claim that the human body is designed according to the golden ratio.
 For example, Browne [Bro; p. Cll] states

 Penrose tiling has another characteristic that fascinates mathematicians
 and architects: it exhibits a feature known to the ancient Greeks as 'the

 golden mean,' a ratio that has been used in paintings, sculpture and
 architecture through the ages. The golden mean governs the proportions
 of the Parthenon and many other classical buildings. The ratio, as applied
 to artistic shapes and structures, is roughly equal to the ratio of lengths of
 the human body as divided at the navel, and is regarded as particularly
 pleasing to the eye.

 This passage repeats many of the misconceptions we have already discussed and
 adds the claim that the ratio of a person's height to the height of his/her navel is
 roughly the golden ratio. We are not told why this is significant; the navel is a scar
 of no great importance in an adult human being. Much of the work relating the
 golden ratio to the human body suffers from the Pyramidology Fallacy.

 While it might be entertaining to compute the ratio of many people's heights to
 the elevations of their navels, I did not spend much time on this effort. I did
 compute the ratios for the four members of my immediate family: 1.59, 1.63, 1.65
 and 1.66. Their average is 1.63, which falls within our test interval for the golden
 ratio, although even in this small sample there is a significant amount of variation.
 However, there is some ambiguity about the precise location of the navel since it
 has a nontrivial length.

 Boles and Newman [Bol; p. 47] find <? in, among other things, two Greek
 statues, Doryphoros the Spearbearer by Polycleitos and Aphrodite of Cyrene.

 The sketch of Doryphoros shows him divided into three zones: from the top of
 the head to the right nipple on the chest which is given the length 1; from the right
 nipple on the chest to the right knee which is given the length 1.61803; from the
 right knee to the big toe on the right foot which is given the length 1. It is unlikely
 that measurements were made accurately enough to justify a ratio with 5 decimal
 places. In particular, a knee covers a large area and should not be treated as a
 single point. A quick examination of their diagram shows that the left side of
 Doryphoros does not have the same proportions.

 The sketch of Aphrodite of Cyrene is also divided into three zones, including
 one with a length of 1.61803. This time, since Aphrodite is missing her head, the
 first zone runs from the stump of the neck to the navel, the second zone runs from
 the navel to the right knee, and the third zone runs from the right knee to some
 indeterminate point on the right foot. Again, assigning 1.61803 as a length is
 nonsense and seems to imply that the sculptor of Aphrodite anticipated that she
 would lose her head.

 Besides seeing the golden ratio in the statues just mentioned, Boles and
 Newman see it in many animal forms. [Bol; p. 59] shows a hawk, a dragonfly, a
 flying squirrel and a sunfish boxed by golden rectangles. The proportion of the
 golden rectangle is given as 1.61803 as before. Of course, wings, legs and fins can
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 be moved over a wide range of positions and it is not surprising that the golden
 rectangle can often be produced. Like the arm of St. Jerome, the tail of the flying
 squirrel extends well past the boundaries of the bounding golden rectangle. Some
 of the wing feathers of the hawk also extend past the boundaries. On page 59 of
 [Bol] the left side of the bounding golden rectangle does not touch any part of the
 sunfish or dragonfly. Despite these difficulties, Boles and Newman express the
 proportions of the bounding rectangle using 5 significant figures.

 Misconception: Virgils' Aeneid Exhibits 4>

 George E. Duckworth wrote Structural Patterns and Proportions in Vergil's Aeneid
 [Due] to prove that Virgil used $ as a key element in designing the Aeneid.
 Duckworth arrives at this conclusion by computing the ratios of the lengths of
 different passages in the Aeneid. His work is criticized by Curchin and Fischler
 [Cur], Fischler [Fi4], and Bews [Bew]. Some of the points raised in [Fi4] are quite
 interesting to a mathematician.

 Duckworth measures the number of lines in what he calls major (M) and minor
 (ra) passages. If m/M is the reciprocal of the golden ratio I/O, then m/M =
 M/(m + M). On this basis Duckworth claims that he can use either measure and
 uses M/(m + M) as being "slightly more accurate" [Due, p. 43, Note 6]. On page
 65 in Note 7, Duckworth observes that m/M shows a greater variation from the
 golden ratio than M/(m + M). Unfortunately, he does not realize that he is
 fooling himself by using M/(m + M). If m/M varies uniformly and randomly over
 [0,1], the ratio M/(m + M) is restricted to the range [0.5,1] and is not uniformly
 distributed.

 This point is illustrated in Figures 12 and 13. Figure 12 is a histogram for 1000
 points chosen at random from the uniform distribution [0,1] for the value r = m/M.

 Figure 12
 One thousand values for m/M chosen at random
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 The points have been grouped into intervals of width 0.01. Figure 13 shows the
 1000 points from Figure 12 replotted using M/(m +M)= 1/(1 + r) instead of
 m/M = r.

 The expected value of points chosen uniformly and randomly from the interval
 [0,1] is 0.5. On the other hand, choosing values from [0,1] at random and plotting
 them as 1/(1 + r) produces the following expected value:

 dx fi ax
 ln(l+x)  = In2-Inl = In2?0.69,

 which is not the golden ratio, but is nevertheless closer to 0.61803... than is 0.5.
 For additional mathematical analysis of Duckworth's approach see [Fi4].

 Figure 13
 The values from Figure 12 replotted using M/(m + M)

 Curchin and Fischler [Cur; p. 133] conclude that

 An analysis, using the ratio m/M, has now been made with Duckworth's
 data and indicates that random scattering is indeed the case with Virgil."

 Not only did Duckworth waste a lot of time on his misguided effort, but other
 people bandy his results about uncritically. An example can be found in [Nim;
 p. 317] in the chapter entitled "Golden Numbers." This chapter, besides repeating
 some of the errors discussed earlier in this paper, contains the following sentence
 on page 317:

 And Vergil, Dante's guide, appears to have made an almost unbelievable
 use of the proportions of the golden section and the Fibonacci numbers
 (as they were later named).*

 The * refers to a footnote referencing Duckworth's work.
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