
Math 2070 Week 6

Elementary Number Theory, Euclid’s Lemma, Congru-
ences, Chinese Remainder Theorem

6.1 Further Results in Elementary Number Theory
Definition 6.1. The Greatest Common Divisor gcd(a, b) of a, b ∈ Z is the largest
positive integer d which divides both a and b (Notation: d|a and d|b).

Note. If a 6= 0, then gcd(a, 0) = |a|. gcd(0, 0) is undefined.

6.1.1 Euclidean Algorithm
Lemma 6.2. If b = aq + r (a, b, q, r ∈ Z), then gcd(b, a) = gcd(a, r).

Proof of Lemma 6.2. If d|a and d|b, then d|r = b−aq. Conversely, if d|a and d|r,
then d|a and d|b = qa + r. So, the set of common divisors of a, b is the same as
the set of the common divisors of a, r. If two finite sets of integers are the same,
then their largest elements are clearly the same. In other words:

gcd(b, a) = gcd(a, r).

Suppose |b| ≥ |a|. Let b0 = b, a0 = a. Write b0 = a0q0 + r0, where
0 ≤ r0 < |a0|.

For n > 0, let bn = an−1 and an = rn−1, where rn is the remainder of the
division of bn by an. That is,

bn = anqn + rn, 0 ≤ rn < |an| .

If r0 = 0, then that means that a|b, and gcd(a, b) = |a|. Now, suppose r0 > 0.
Since rn is a non-negative integer and 0 ≤ rn < rn−1, eventually, rn = 0 for some
n ∈ N.
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Claim 6.3. gcd(b, a) = |an|.

Proof of Claim 6.3. By the previous lemma,

gcd(b, a) = gcd(b0, a0)

= gcd(a0, r0) = gcd(b1, a1)

= gcd(a1, r1) = gcd(b2, a2)

= . . .

= gcd(an, rn) = gcd(an, 0) = |an| .

Example 6.4. Find gcd(285, 255).

285︸︷︷︸
b0

= 255︸︷︷︸
a0

1︸︷︷︸
q0

+ 30︸︷︷︸
r0

255︸︷︷︸
b1=a0

= 30︸︷︷︸
a1=r0

8︸︷︷︸
q1

+ 15︸︷︷︸
r1

30︸︷︷︸
b2

= 15︸︷︷︸
a2

2︸︷︷︸
q2

+ 0︸︷︷︸
r2

So, gcd(285, 255) = r1 = 15.

Claim 6.5 (Bézout’s Lemma). Let a, b be nonzero integers. There exist x, y ∈ Z
such that gcd(a, b) = ax+ by.

Proof of Bézout’s Lemma. Sketch of Proof:

Approach 1. Recall the notation used in Section 6.1.1 ( Euclidean Algorithm ) .
We saw that if rn = 0, then gcd(a, b) = rn−1.

We may prove Bézout’s Lemma via mathematical induction as follows:
First, for integers 0 ≤ l < min(n− 1, 2), show that there exist xl, yl ∈ Z such

that rl = axl + byl. This is the base step of the induction proof.
We now carry out the inductive step. Suppose n − 1 ≥ 2. For any integer

2 ≤ k ≤ n− 1, suppose rl = axl + byl for some xl, yl ∈ Z, for all 0 ≤ l < k.
Show that:

rk = bk︸︷︷︸
ak−1=rk−2

−qk ak︸︷︷︸
rk−1

also has the form rk = axk + byk for some xk, yk ∈ Z.
The desired identity gcd(a, b) = rn−1 = axn−1 + byn−1 then follows by math-

emtical induction.

2

https://www.math.cuhk.edu.hk/~pschan/cranach-dev/?xml=https://raw.githubusercontent.com/pschan-gh/math2070/devel/week6.xml&section=6.1.1


Approach 2. Consider the set:

S = {n ∈ Z>0|n = ax+ by for some x, y ∈ Z}.

Show that the the minimum element d ∈ S is the greatest common divisor of a
and b.

Exercise 6.6. Find x, y ∈ Z such that:

gcd(285, 255) = 285x+ 255y.

Exercise 6.7. For any nonzero a, b in the group G = (Z,+), we have:

〈a, b〉 = 〈gcd(a, b)〉.

Definition 6.8. Two integers a, b ∈ Z are relatively prime if gcd(a, b) = 1.

Claim 6.9. Two integers a, b ∈ Z are relatively prime if and only if there exist
x, y ∈ Z such that ax+ by = 1.

Proof of Claim 6.9. If a, b are relatively prime, then by definition gcd(a, b) = 1.
So, by Claim 6.5 (Bézout’s Lemma) there exist x, y ∈ Z such that:

ax+ by = gcd(a, b) = 1.

Conversely, suppose ax + by = 1 for some x, y ∈ Z. Then, any common divisor
of a and b must also be a divisor of 1. Since 1 is only divisible by±1, we conclude
that gcd(a, b) = 1.

Definition 6.10. An integer p ≥ 2 is prime if its only proper divisors (i.e. divisors
different from ±p) are ±1.

Lemma 6.11 (Euclid’s Lemma). Let a, b be integers. If p is prime and p|ab, then
p divides at least one of a and b.

Proof of Euclid’s Lemma. Suppose p does not divide b (Notation: p - b), then
gcd(p, b) = 1, which implies that 1 = px + by for some x, y ∈ Z. Since p|apx
and p|aby, we have p|a = a (px+ by)︸ ︷︷ ︸

=1

.

More generally,
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Claim 6.12. If a, b are relatively prime and a|bc, then a|c.

Proof of Claim 6.12. Exercise.

Claim 6.13. If a, b are relatively prime and:

a|c, b|c,

then:
ab|c.

Proof of Claim 6.13. By assumption, there are s, t ∈ Z such that:

c = as = bt.

So, a|as = bt, which by Claim 6.12 implies that a|t, since gcd(a, b) = 1.
Hence, t = au for some u ∈ Z, and we have c = bt = abu. It follows that

ab|c.

Theorem 6.14 (The Fundamental Theorem of Arithmetic). Let a be a positive
integer ≥ 2. Then,

1. The integer a is either a prime or a product of primes.

2. Unique Factorization The integer a may be written uniquely as

a = pn1
1 pn2

2 · · · p
nl
l ,

where p1, p2, · · · , pl are distinct prime numbers, and n1, n2, . . . , nl ∈ N.

Proof of The Fundamental Theorem of Arithmetic. We prove Part 1 of the theo-
rem by contradiction.

Suppose there exist positive integers ≥ 2 which are neither primes nor prod-
ucts of primes.

Let m be the smallest such integer. Since m is not prime, there are positive
integers a, b 6= 1 such that m = ab.

In particular, a, b < m. So, a and b must be either primes or products of
primes, which implies that m is itself a product of primes, a contradiction.

We now prove Part 2 ( Unique Factorization ) of the theorem by induction.
The base step corresponds to the case l = 1.
Suppose:

a = pn1
1 = qm1

1 qm2
2 · · · q

mk
k ,
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where p1 is prime, and the qi’s are distinct primes, and n1,mi ∈ N.
Then, p1 divides the right-hand side, so by Euclid’s Lemma p1 divides one of

the qi’s.
Since the qi’s are prime, we may assume (reindexing if necessary) that p1 = q1.
Suppose k > 1. If n1 > m1, then pn1−m1

1 = qm2
2 · · · q

mk
k , which implies that

p1 = q1 is one of q2, . . . , qk, a contradiction, since the qi’s are distinct.
If n1 ≤ m1, then 1 = pm1−n1

1 qm2
2 · · · q

mk
k , which is impossible. We conclude

that k = 1, and p1 = q1, n1 = m1.
Now we establish the inductive step: Suppose unique factorization is true for

all positive integers a′ which may be written as a′ = pn1
1 pn2

2 · · · p
nl′
l′ , for any l′ < l.

We want to show that it is also true for any integer a which may be written as
a = pn1

1 pn2
2 · · · p

nl
l .

In other words, suppose

a = pn1
1 pn2

2 · · · p
nl
l = qm1

1 · · · q
mk
k ,

where pi, qi are prime and ni,mi ∈ N. We want to show that k = l, and pi = qi,
ni = mi, for i = 1, 2, . . . , l.

If k < l, then by the inductive hypothesis applied to l′ = k < l, we have k = l,
a contradiction. So, we may assume that k ≥ l.

By Euclid’s Lemma, pl divides, and hence must be equal to, one of the qi’s.
Reindexing if necessary, we may assume that pl = qk. Cancelling pl and qk

from both sides of the equation, it is also clear that nl = mk. Hence, we have:

pn1
1 pn2

2 · · · p
nl−1

l−1 = qm1
1 · · · q

mk−1

k−1 .

Since l−1 < l, we may now apply the inductive hypothesis to the integer which is
equal to the left-hand side of the above equation, and conclude that l− 1 = k− 1,
pi = qi, ni = mi, for 1 ≤ i ≤ l − 1.

Since we already know that pnl
l matches qmk

k , we have l = k, and pi = qi,
ni = mi, for 1 ≤ i ≤ l. This establishes the inductive step, and completes the
proof.

6.1.2 WeBWorK
1. WeBWorK

2. WeBWorK

3. WeBWorK
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6.2 Modular Arithmetic
Definition 6.15. Let m be a positive integer, then a, b ∈ Z are said to be:

congruent modulo m
a ≡ b mod m,

if m|(a− b).

Claim 6.16. The congruence relation ≡ is an equivalence relation . In other
words, it is:

• Reflexive:

a ≡ a mod m;

• Symmetric:

a ≡ b mod m implies that b ≡ a mod m;

• Transitive:

a ≡ b mod m, b ≡ c mod m, imply that a ≡ c mod m.

Proof of Claim 6.16. • Reflexivity Since m|0 = (a − a), we have a ≡ a
mod m.

• Symmetry If a ≡ b mod m, then by definition m divides a − b. But if m
divides a−b, it must also divide−(a−b) = b−a, which implies that b ≡ a
mod m.

• Transitivity If m|(a−b) and m|(b−c), then m|((a−b)+(b−c)) = (a−c),
which implies that a ≡ c mod m.

Note. a ≡ 0 mod m if and only if m|a.

Claim 6.17. 1. If a = qm+ r, then a ≡ r mod m.

2. If 0 ≤ r < r′ < m, then r 6≡ r′ mod m.

Proof of Claim 6.17. Exercise.

Corollary 6.18. Given integer m ≥ 2, every a ∈ Z is congruent modulo m to
exactly one of {0, 1, 2, . . . ,m− 1}.

Proof of Corollary 6.18. By Part 1 of the claim, a is congruent mod m to the
remainder r of the division of a by m.

By definition, the remainder r lies in {0, 1, 2, . . . ,m− 1}. If a ≡ r′ mod m,
for some r′ ∈ {0, 1, 2, . . . ,m− 1}, then by transitivity, we have r′ ≡ r mod m.

By Part 2 of the claim, we have r = r′.
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Theorem 6.19. Congruence is compatible with addition and multiplication in the
following sense:

• Addition If a ≡ a′ mod m, and b ≡ b′ mod m, then a + b ≡ a′ + b′

mod m.

• Multiplication If a ≡ a′ mod m and b ≡ b′ mod m, then ab ≡ a′b′

mod m.

Proof of Theorem 6.19. • Addition If m|(a− a′) and m|(b− b′), then:

m|(a− a′) + (b− b′) = (a+ b)− (a′ + b′).

So, a+ b ≡ a′ + b′ mod m.

• Multiplication If m|(a− a′) and m|(b− b′), then:

m|(a− a′)b+ a′(b− b′) = (ab− a′b′).

So, ab ≡ a′b′ mod m.

Example 6.20. For a ∈ Z, a2 ≡ 0, 1, or 4 mod 8.

Proof of Example 6.20. By Corollary 6.18 , any a ∈ Z is congruent modulo 8 to
exactly one element in {0, 1, 2, . . . , 7}. So, by Theorem 6.19 , a2 is congruent
modulo 8 to one of:

{02, 12, 22, 32, 42, 52, 62, 72} = {0, 1, 4, 9, 16, 25, 36, 49}.

The numbers above a congruent modulo 8 to 0, 1, or 4. The claim follows.

Theorem 6.21. If a and m are relatively prime, then there exists x ∈ Z such that
ax ≡ 1 mod m.

Proof of Theorem 6.21. Since a and m are relatively prime, by Claim 6.5 (Bé-
zout’s Lemma) there exist x, y ∈ Z such that:

ax+my = 1.

This implies that m divides my = 1 − ax. So, by definition, we have ax ≡ 1
mod m.
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Theorem 6.22 (Chinese Remainder Theorem). If m1 and m2 are relatively prime,
then the system of congruence relations:

x ≡ r1 mod m1

x ≡ r2 mod m2

has a solution x0 ∈ Z. Moreover, any two solutions are congruent modulo m1m2,
and any integer which is congruent to x0 modulo m1m2 is also a solution.

Remark. In other words, the system of two congruence relations is equivalent to
a single congruence relation:

x ≡ r mod m1m2

for some r ∈ Z.
Applying this process repeatedly, a system of congruence relations of the

form:

x ≡ r1 mod m1

x ≡ r2 mod m2

...
x ≡ rl mod ml

where the mi’s are pairwise coprime, is equivalent to a single relation of the form:

x ≡ r mod m1m2 · · ·ml

for some r ∈ Z.

Proof of Chinese Remainder Theorem. Since m1 and m2 are relatively prime, by
Theorem 6.21 there exists n ∈ Z such that m1n ≡ 1 mod m2. Let x = m1n(r2−
r1) + r1.

Since:
m1n(r2 − r1) ≡ 0 mod m1,

we have:
x ≡ r1 mod m1.

Moreover, since m1n ≡ 1 mod m2, we have:

x = m1n(r2 − r1) + r1 ≡ r2 − r1 + r1 ≡ r2 mod m2.

This shows that the system of congruence relations has at least one solution.
If x′ is another solution to the system, then:
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x− x′ ≡ r1 − r1 ≡ 0 mod m1,

x− x′ ≡ r2 − r2 ≡ 0 mod m2.

So, m1|(x−x′) and m2|(x−x′). Since, m1,m2 are relatively prime, by a previous
result we conclude that m1m2|(x− x′). In other words, x ≡ x′ mod m1m2.

Conversely, for any integer k, it is clear x′ = x + m1m2k is also a solution
provided that x is a solution.

Hence, the solution set to the system of congruence relations may be described
by:

x ≡ x0 mod m1m2,

where x0 is any particular solution to the system.

Note. The proof of the Chinese Remainder Theorem as written above is com-
plete. However, it is worthwhile to explain how we come up with the solution
x = m1n(r2 − r1) + r1 in the first place.

Heuristically, the solution may be arrived at as follows: For any q ∈ Z, x =
m1q+ r1 is a solution to the first congruence relation. We want to find q such that
m1q + r1 is also a solution to the second congruence relation, that is:

m1q + r1 ≡ r2 mod m2

or, equivalently,
m1q ≡ r2 − r1 mod m2. (∗)

Noting that there exists an n ∈ Z such that m1n ≡ 1 mod m2, the congruence
relation (∗) is equivalent to:

q ≡ n(r2 − r1) mod m2.

Hence, x = m1q + r1 is a solution to the system of congruence relations if and
only if q is of the form m2l + n(r2 − r1), where l ∈ Z. In particular, l = 0 gives
q = n(r2 − r1). Hence, x = m1n(r2 − r1) + r1 is a solution.

Example 6.23. Solve the following system of congruence relations:

x ≡ 3 mod 34 (6.1)
x ≡ −1 mod 27 (6.2)

The relation (6.1) holds if and only if:

x = 34s+ 3
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for some s ∈ Z.
For any such x, the relation (6.2) holds if and only if:

34s+ 3 ≡ −1 mod 27,

or equivalently:
34s ≡ −4 mod 27. (6.3)

Since gcd(34, 27) = 1, by Theorem 6.21 there exists a ∈ Z such that a · 34 ≡ 1
mod 27. To find a, we perform the Euclidean Algorithm on 34 and 27:

34 = 27 · 1 + 7

27 = 7 · 3 + 6

7 = 6 · 1 + 1

6 = 1 · 6 + 0

Working backwards from the last equation, we see that:

1 = 34(4) + 27(−5)

Hence:
27|(1− 34 · 4)

That is, 34 · 4 ≡ 1 mod 27. So, we may take a = 4.
Multiplying both sides of (6.3) by a = 4, we see that (6.3) holds if and only if:

s ≡ −16 mod 27,

which is equivalent to:
s ≡ 11 mod 27.

Since the relation above holds if and only if s = 27t + 11 for some t ∈ Z, we
conclude that x ∈ Z is a solution to our system of congruence relations if and only
if:

x = 34s+ 3 = 34(27t+ 11) + 3 = (34)(27)t+ 377

for some t ∈ Z. More concisely, the solution set to the system of congruence
relations is represented by the single relation:

x ≡ 377 mod 34 · 27

Exercise 6.24. 1. WeBWorK

2. WeBWorK

3. WeBWorK
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4. WeBWorK

5. WeBWorK

6. WeBWorK

7. WeBWorK

8. WeBWorK

9. WeBWorK

10. WeBWorK

11. WeBWorK

12. WeBWorK

13. WeBWorK

14. WeBWorK
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