Math 2070 Week 5

Group Homomorphisms, Rings

Claim 5.1. Any cyclic group of finite order n is isomorphic to Z,,.

Proof of Claim 5.1. Sketch of Proof:

By definition, a cyclic group G is equal to (g) for some g € G. Moreover,
ordg = ord G.

Define a map ¢ : Z,, — G as follows:

o(k) =g ke{0,1,2,...,n—1}.

Show that ¢ is a group isomorphism.
(For reference, see the discussion of Example 4.15.) U

Corollary 5.2. If G and G’ are two finite cyclic groups of the same order, then G
is isomorphic to G'.

Exercise 5.3. An infinite cyclic group is isomorphic to (Z, +).

Exercise 5.4. Let G be a cyclic group, then any group which is isomorphic to G
is also cyclic.

5.1 Product Group
Let (A, %4), (B, *p) be groups. The direct product:
Ax B:={(a,b) |a€ Abe B}
has a natural group structure where the group operation * is defined as follows:

(a,b) % (a', V) = (axad',bxgl), (a,b),(d,0) € AxB.
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The identity element of A X B is e = (e, ep), where e4, ep are the identity
elements of A and B, respectively.

For any (a,b) € A x B, we have (a,b)"! = (a!,b7"), where a™', b~! are the
inverses of a, b in the groups A, B, respectively.

For any collection of groups A;, As, ..., A,, we may similarly define a group
operation * on:

Al XAQ X XAn = {(Gl,&g,...,an) ’ aiEAi,i: 1,2,71,}
That is:
(a1,ag,...,a,) % (ay,ah, ..., a,) = (aj *a, ay,ag *a, Ay, ..., a4y *4, a,,)

The identity element of A; X Ay X --- X A, is:

e=(ea,,€4y,---,€4,).
For any (a1, as, . ..,a,) € Ay X Ay x -+ X A, its inverse is:
1 11 1
(a1,a9,...,a,) " = (a; a5 5...,a ).

Exercise 5.5. Zg is isomorphic to Zy X Zs.

Proof of Exercise 5.5. Hint:
Show that Z, x Zs is a cyclic group generated by (1, 1). O

Example 5.6. The cyclic group Z, is not isomorphic to Zg X Zs,.

Proof of Example 5.6. Each element of G = Zy X Z is of order at most 2. Since
|G| = 4, G cannot be generated by a single element. Hence, G is not cyclic, so it
cannot be isomorphic to the cyclic group Z;. U

Exercise 5.7. Let G be an abelian group, then any group which is isomorphic to
G is abelian.

Example 5.8. The group Dg has 12 elements. We have seen that Dg = (ry, s),
where 7 is a rotation of order 6, and s is a reflection, which has order 2. So, it is
reasonable to ask if Dg is isomorphic to Zg X Z,. The answer is no. For Zg X Zs
is abelian, but Dy is not.

Claim 5.9. The dihedral group Ds is isomorphic to the symmetric group Ss.

Proof of Claim 5.9. We have seen that D3 = (r, s), where r = r; and s is any
fixed reflection, with:

ordr =3, ords=2, srs=r""
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In particular , any element in D3 may be expressed as r's’, with i € {0,1,2},

j € {0,1}.
We have also seen that S5 = (a, b), where:

a=(123), b= (12), orda=3, ordb=2, bab=a"'.

Hence, any element in S5 may be expressed as a't’, with i € {0, 1,2}, j € {0,1}.
Define map ¢ : D3 — S5 as follows:

p(r's’)y =ad't’, i,j €L

We first show that ¢ is well-defined: That is, whenever s’ = 1% s/, we want
to show that:

o(r's’) = o(r''s”).
The condition r’s’ = 75/ implies that:

i '

. . sl g . . . .
This holds only if 77" = s’ 77 = e, since no rotation is a reflection.
Since ord r = 3 and ord s = 2, we have:

3I(i =), 2" = J),

by Theorem 2.2.
Hence,
OOl ) = (@) (@B
=abb 7 a"
= aibj_jla_i/
=a " since ord b = 2.
=e since ord a = 3.

This implies that ¢(r's’) = ¢(r"s7"). We conclude that ¢ is well-defined.
We now show that ¢ is a group homomorphism:
Given pu, i/ € {0,1,2}, v,/ € {0, 1}, we have:

p(riti's”y,  ifv=0;

p(ri—rsv Y ify = 1.

o(rts” - 7““/3”/) = {

/ / / / .
at T ptY = atbVat b, if v = 1.

B {a“*“/b”/, if v =0;
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= qb(r“s”)(b(r“ls”/).

This shows that ¢ is a group homomorphism.

To show that ¢ is a group isomorphism, it remains to show that it is surjective
and one-to-one.

It is clear that ¢ is surjective. We leave it as an exercise to show that ¢ is
one-to-one. [

Example 5.10. The group:

cosf) —sind
sinf cosf

Gz{géGL(?,R)‘g:( > forsome@E]R}

is isomorphic to
G' ={z€C:|z| =1}

Here, the group operation on G is matrix multiplication, and the group operation
on GG is the multiplication of complex numbers.

Each element in G is equal to €' for some 6 € R. Defineamap ¢ : G — G’

as follows:
cosf —sinf T
¢<(sin9 cos 6 ))—e '

Exercise: Show that ¢ is a well-defined map. Then, show that it is a bijective
group homomorphism.

5.1.1 WeBWorKk
1. WeBWorK

2. WeBWorK
3. WeBWorK
4. WeBWork
5. WeBWorK
6. WeBWorK
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5.2 Rings

5.2.1 Basic Results in Elementary Number Theory

Theorem 5.11 (Division Theorem). Let a,b € Z, a # 0, then there exist unique
q (called the quotient), and r (remainder) in Z, satisfying 0 < r < |a|, such that
b=aq+r.

Proof of Division Theorem. We will prove the case a > 0, b > 0. The other cases
are left as exercises.

Fix a > 0. First, we prove the existence of the quotient ¢ and remainder 7 for
any b > 0, using mathematical induction.

The base step corresponds to the case 0 < b < a. In this case, if we let ¢ = 0
and r = b, then indeed b = ga + r, where 0 < r = b < a. Hence, g and r exist.

The inductive step of the proof of the existence of ¢ and r is as follows:
Suppose the existence of the quotient and remainder holds for all non-negative
b’ < b, we want to show that it must also hold for b.

First, we may assume that b > a, since the case b < a has already been
proved. Let b’ = b — a. Then, 0 < b' < b, so by the inductive hypothesis we have
b = q¢'a+r' for some ¢',r’ € Z such that 0 < 1’ < a.

This implies thatb =0 +a = (¢’ + 1)a + 7.

So,ifweletq = ¢ +1andr = 7/, then b = ga + r, where 0 < r < a.
This establishes the existence of ¢, r for b. Hence, by mathematical induction, the
existence of ¢, r holds for all b > 0.

Now we prove the uniqueness of ¢ and r. Suppose b = ga +r = ¢'a + 1/,
where ¢, ¢',r, 7" € Z, with 0 < r, 7’ < a.

Then, ga + r = ¢'a + 7’ implies that r — " = (¢ — q)a. Since 0 < 7,7’ < a,
we have:

/|_

a>|r—r'|=1¢ -qla.

Since ¢’ — ¢ is an integer, the above inequality implies that ¢ — ¢ = 0, i.e.
¢ = q, which then also implies that ' = r. We have therefore established the
uniqueness of ¢ and 7.

The proof of the theorem, for the case a > 0,b > 0, is now complete. O]

Another Proof of the Theorem 5.11 (Division Theorem).

Proof of Division Theorem. We consider here the special case b > 0. Consider
the set:
S={s€Zsy: s=b—aqgforsomeqc Z.}
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Sinceb=0b—a-0>0,wehaveb € S. So, S is a nonempty subset of Z bounded
below by 0. By the Least Integer Axiom, there exists a minimum element r € S.
We claim that r < |al:
Suppose not, that is, » > |a|. By assumption: 7 = b — aq for some ¢ € Z.
Consider the element 7’ = r — |a|. Then, 0 < " and moreover:

= (b—aq) —la| =b— (g% 1)a,

depending on whether a > 0 or @ < 0. So, v € S. On the other hand, by
construction we have " < r, which contradicts the minimality of 7. We conclude
that < |a|. This establishes the existence of the remainder .

The existence of ¢ in the theorem is now also clear. We leave the proof of the
uniqueness of 7 and ¢ as an exercise. [

Theorem 5.12. Every subgroup of 7 is cyclic.

Proof of Theorem 3.7. First, we note that the group operation * on Z is integer
addition, with ez = 0, and 2*~! = —z for any z € Z.

Let A be a nontrivial (i.e. contains more than one element) subgroup of Z.
Since for any h € H we also have —h € H, H contains at least one positive
element.

Let d be the least positive integer in H. It exists because of the Least Integer
Axiom.

We claim that H = (d):

For any h € H, by the Division Theorem for Integers we have h = dq + r for
some 1, q € Z, such that 0 < r < d. Then,

r=h—dg=h—(d+d+... +d)

q times
if g > 0, or
r=h—dg=h—((—d)+ (=d)+...+(—d))
qg;es
if ¢ < 0.

In either case, since H is a subgroup we have r € H. If » > 0, then we
have a positive element in A which is strictly less than d, which contradicts the
minimality of d. Hence, r = 0, from which it follows that any h € H is equal to
dq = d*9 for some q € Z. This shows that H = (d). O

Exercise 5.13. Let n be a positive integer. Every subgroup of Z, is cyclic.

Corollary 5.14. Every subgroup of a cyclic group is cyclic.
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