
Math 2070 Week 4

Lagrange’s Theorem, Generators, Group Homomorphisms

4.1 Lagrange’s Theorem
Theorem 4.1 (Lagrange’s Theorem). Let G be a finite group. Let H be subgroup
of G, then |H| divides |G|. More precisely, |G| = [G : H] · |H|.

Proof of Lagrange’s Theorem. We already know that the left cosets ofH partition
G. That is:

G = a1H t a2H t . . . t a[G:H]H,

where aiH ∩ ajH = ∅ if i 6= j. Hence, |G| =
∑[G:H]

i=1 |aiH|.
The theorem follows if we show that the size of each left coset of H is equal

to |H|.
For each left coset S of H , pick an element a ∈ S, and define a map ψ :

H −→ S as follows:
ψ(h) = ah.

We want to show that ψ is bijective.
For any s ∈ S, by definition of a left coset (as an equivalence class) we have

s = ah for some h ∈ H . Hence, ψ is surjective.
If ψ(h′) = ah′ = ah = ψ(h) for some h′, h ∈ H , then h′ = a−1ah′ =

a−1ah = h. Hence, ψ is one-to-one.
So we have a bijection between two finite sets. Hence, |S| = |H|.

Corollary 4.2. Let G be a finite group. The order of every element of G divides
the order of G.

Since G is finite, any element of g ∈ G has finite order ord g. Since the order
of the subgroup:

H = 〈g〉 = {e, g, g2, . . . , g(ord g)−1}
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is equal to ord g, it follows from Lagrange’s Theorem that ord g = |H| divides
|G|.

Corollary 4.3. If the order of a group G is prime, then G is a cyclic group.

Corollary 4.4. If a group G is finite, then for all g ∈ G we have:

g|G| = e.

Corollary 4.5. Let G be a finite group. Then a nonempty subset H of G is a
subgroup of G if and only if it is closed under the group operation of G (i.e.
ab ∈ H for all a, b ∈ H).

Proof of Corollary 4.5. It is easy to see that if H is a subgroup, then it is closed
under the group operation. The other direction is left as an Exercise .

Example 4.6. Let n be an integer greater than 1. The group An of even permuta-

tions on a set of n elements (see Example 3.4) has order
n!
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Proof of Example 4.6. View An as a subgroup of Sn, which has order n!.
Exercise : Show that Sn = An t (12)An.
Hence, we have [Sn : An] = 2.
It now follows from Theorem 4.1 (Lagrange’s Theorem) that:

|An| =
|Sn|

[Sn : An]
=
n!
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4.1.1 WeBWorK
1. WeBWorK

2. WeBWorK

3. WeBWorK

4. WeBWorK
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4.2 Generators
Let G be a group, X a nonempty subset of G. The subset of G consisting of
elements of the form:

gm1
1 gm2

2 · · · gmn
n , where n ∈ N, gi ∈ X,mi ∈ Z,

is a subgroup of G. We say that it is the subgroup of G generated by X . If
X = {x1, x2, . . . , xl}, l ∈ N. We often write:

〈x1, x2, . . . , xl〉

to denote the subgroup generated by X .

Example 4.7. In Dn, {r0, r1, . . . , rn−1} = 〈r1〉.

If there exists a finite number of elements x1, x2, . . . , xl ∈ G such that G =
〈x1, x2, . . . , xl〉, we say that G is finitely generated .

For example, every cyclic group is finitely generated, for it is generated by one
element.

Every finite group is finitely generated, since we may take the finite generating
set X to be G itself.

Example 4.8. Consider G = D3, and its subgroup H = {r0, r1, r2} consisting of
its rotations. (We use the convention that rk is the anticlockwise rotation by an
angle of 2πk/3).

By Lagrange’s Theorem, the index of H in G is [G : H] = |G| / |H| = 2.
This implies that G = H t gH for some g ∈ G. Since gH = H if g ∈ H , we
may conclude that g /∈ H . So, g is a reflection.

Conversely, for any reflection s ∈ D3, the left coset sH is disjoint from H .
We have therefore G = Hts1H = Hts2H = Hts3H , which implies that
s1H = s2H = s3H .

In particular, for a fixed s = si, any element in G is either a rotation or equal
to sri for some rotation ri. Since H is a cyclic group, generated by the rotation
r1, we have D3 = 〈r1, s〉, where s is any reflection in D3.

4.3 Group Homomorphisms
Definition 4.9. Let G = (G, ∗), G′ = (G′, ∗′) be groups. A group homomor-
phism φ from G to G′ is a map φ : G −→ G′ which satisfies:

φ(a ∗ b) = φ(a) ∗′ φ(b),

for all a, b ∈ G.
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Claim 4.10. If φ : G −→ G′ is a group homomorphism, then:

1. φ(eG) = eG′ .

2. φ(g−1) = φ(g)−1, for all g ∈ G.

3. φ(gn) = φ(g)n, for all g ∈ G, n ∈ Z.

Proof of Claim 4.10. We prove the first claim, and leave the rest as an exercise.
Since eG is the identity element of G, we have eG ∗ eG = eG. On the other hand,
since φ is a group homomorphism, we have:

φ(eG) = φ(eG ∗ eG) = φ(eG) ∗′ φ(eG).

Since G′ is a group, φ(eG)−1 exists in G′, hence:

φ(eG)
−1 ∗′ φ(eG) = φ(eG)

−1 ∗′ (φ(eG) ∗′ φ(eG))

The left-hand side is equal to eG′ , while by the associativity of ∗′ the right-hand
side is equal to φ(eG).

Let φ : G −→ G′ be a homomorphism of groups. The image of φ is defined
as:

imφ := φ(G) := {g′ ∈ G′ : g′ = φ(g) for some g ∈ G} ⊆ G′

The kernel of φ is defined as:

kerφ = {g ∈ G : φ(g) = eG′} ⊆ G.

Claim 4.11. The image of φ is a subgroup of G′. The kernel of φ is a subgroup of
G.

Claim 4.12. A group homomorphism φ : G −→ G′ is one-to-one if and only if
kerφ = {eG}.

Example 4.13 (Examples of Group Homomorphisms). • φ : Sn −→ ({±1}, ·),

φ(σ) =

{
1, σ is an even permutation.
−1, σ is an odd permutation.

kerφ = An.

• det : GL(n,R) −→ (R×, ·)
ker det = SL(n,R).
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• Let G be the (additive) group of all real-valued continuous functions on
[0, 1].

φ : G −→ (R,+)

φ(f) =

∫ 1

0

f(x) dx.

• φ : (R,+) −→ (R×, ·).
φ(x) = ex.

Definition 4.14. Let G, G′ be groups. A map φ : G −→ G′ is a group isomor-
phism if it is a bijective group homomorphism.

Note that if a homomorphism φ is bijective, then φ−1 : G′ −→ G is also
a homomorphism, and consequently, φ−1 is an isomorphism. If there exists an
isomorphism between two groups G and G′, we say that the groups G and G′ are
isomorphic .

Example 4.15. Recall Definition 3.1 and Exercise 3.2.
Let n > 2. Let H = {r0, r1, r2, . . . , rn−1} be the subgroup of Dn consisting

of all rotations, where r1 denotes the anticlockwise rotation by the angle 2π/n,
and rk = rk1 . Then, H is isomorphic to Zn = (Zn,+Zn).

Proof of Example 4.15. Define φ : H −→ Zn as follows:

φ(rk) = k, k ∈ {0, 1, 2, . . . , n− 1}.

For any k ∈ Z, let k ∈ {0, 1, 2, . . . , n − 1} denote the remainder of the division
of k by n. By the Division Theorem for Integers, we have:

k = nq + k

for some integer q ∈ Z.
It now follows from ord r1 = n that, for all ri, rj ∈ H , we have:

rirj = ri1r
j
1 = ri+j

1

= rnq+i+j
1

= (rn1 )
q ri+j

1

= ri+j.

Hence,

φ(rirj) = φ(ri+j)

= i+ j

= i+Zn j

= φ(ri) +Zn φ(rj).
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This shows that φ is a homomorphism. It is clear that φ is surjective, which
then implies that φ is one-to-one, for the two groups have the same size. Hence,
φ is a bijective homomorphism, i.e. an isomorphism.
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