Math 2070 Week 4

Lagrange’s Theorem, Generators, Group Homomorphisms

4.1 Lagrange’s Theorem

Theorem 4.1 (Lagrange’s Theorem). Let G be a finite group. Let H be subgroup
of G, then |H| divides |G|. More precisely, |G| = |G : H| - |H]|.

Proof of Lagrange’s Theorem. We already know that the left cosets of H partition
G. That is:
G = alH L CLQH L. CL[G:H]H,

where ¢, H Na;H = () if i # j. Hence, |G| = ZEIH] la;H|.

The theorem follows if we show that the size of each left coset of H is equal
to |H|.

For each left coset S of H, pick an element a € S, and define a map ¢ :
H — S as follows:

b(h) = ah.

We want to show that 1) is bijective.

For any s € S, by definition of a left coset (as an equivalence class) we have
s = ah for some h € H. Hence, 1 is surjective.

If (W) = ah’ = ah = (h) for some W/,h € H, then b’ = a 'ah/ =
a"tah = h. Hence, 1) is one-to-one.

So we have a bijection between two finite sets. Hence, |S| = |H|. O

Corollary 4.2. Let G be a finite group. The order of every element of G divides
the order of G.

Since G is finite, any element of g € G has finite order ord g. Since the order
of the subgroup:

H={9)={e,9,6%...,g97"}
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is equal to ord g, it follows from Lagrange’s Theorem that ord g = |H| divides
GI.

Corollary 4.3. If the order of a group G is prime, then G is a cyclic group.

Corollary 4.4. If a group G is finite, then for all g € G we have:

g% =e.

Corollary 4.5. Let GG be a finite group. Then a nonempty subset H of G is a
subgroup of G if and only if it is closed under the group operation of G (i.e.
ab € H forall a,b € H).

Proof of Corollary 4.5. 1t is easy to see that if H is a subgroup, then it is closed
under the group operation. The other direction is left as an Exercise . [

Example 4.6. Let n be an integer greater than 1. The group A,, of even permuta-
|

tions on a set of n elements (see Example 3.4) has order %

Proof of Example 4.6. View A,, as a subgroup of S,,, which has order n!.
Exercise : Show that S,, = A, U (12)A,,.
Hence, we have [S,, : A,] = 2.
It now follows from Theorem 4.1 (Lagrange’s Theorem) that:

| Sl n!
Ay = —— = —.
4] [Sy = Ay 2

4.1.1 WeBWork
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4.2 Generators

Let G be a group, X a nonempty subset of G. The subset of G consisting of
elements of the form:

g97tgy g, where neN g € X m;€Z,
is a subgroup of G. We say that it is the subgroup of G generated by X. If
X ={zy,x9,...,2}, 1 € N. We often write:

<.CE1, To, ... 737l>
to denote the subgroup generated by X.
Example 4.7. In Dn, {7’0, T1y... 7Tn—1} = <T1>.

If there exists a finite number of elements 1, x5, ...,x; € G such that G =
(1,29, ...,1), we say that G is finitely generated .

For example, every cyclic group is finitely generated, for it is generated by one
element.

Every finite group is finitely generated, since we may take the finite generating
set X to be G itself.

Example 4.8. Consider G = D3, and its subgroup H = {rg, 1,72} consisting of
its rotations. (We use the convention that 7 is the anticlockwise rotation by an
angle of 27k /3).

By Lagrange’s Theorem, the index of H in G is |G : H| = |G|/ |H| = 2.
This implies that G = H U gH for some g € G. Since gH = H if g € H, we
may conclude that g ¢ H. So, g is a reflection.

Conversely, for any reflection s € Ds, the left coset sH 1s disjoint from H.
We have therefore G = HUsH = HUsoH = HUs3H, which implies that
SlH = 82H = SgH.

In particular, for a fixed s = s;, any element in ( is either a rotation or equal
to sr; for some rotation r;. Since H is a cyclic group, generated by the rotation
r1, we have D3 = (rq, s), where s is any reflection in Dj.

4.3 Group Homomorphisms

Definition 4.9. Let G = (G, *), G' = (G', ') be groups. A group homomor-
phism ¢ from G to G’ is a map ¢ : G — G’ which satisfies:

p(a*b) = ¢(a) " (b),
forall a,b € G.



Claim 4.10. If ¢ : G — G’ is a group homomorphism, then:
1. ¢(eq) = e
2. 9(g7") = ¢(g)! forallg € G.
3. o(g") = ¢(g)" forall g € G, n € Z.

Proof of Claim 4.10. We prove the first claim, and leave the rest as an exercise.
Since e is the identity element of (G, we have e * e = e. On the other hand,
since ¢ is a group homomorphism, we have:

dlea) = dlea * eq) = ¢lea) ¥ ¢(eq).

Since G’ is a group, ¢(eg) ! exists in G’, hence:

Plec) ™ ¥ dleq) = dlec) ™' + (d(ec) ¥ d(ec))

The left-hand side is equal to egs, while by the associativity of *' the right-hand
side is equal to ¢(eq). O

Let ¢ : G — G’ be a homomorphism of groups. The image of ¢ is defined

as:
im¢ :=¢(G) :={g € G : g = ¢(g) forsome g G} C G

The kernel of ¢ is defined as:
ker¢ = {g € G: ¢(g) = cxr} C G-

Claim 4.11. The image of ¢ is a subgroup of G'. The kernel of ¢ is a subgroup of
G.

Claim 4.12. A group homomorphism ¢ : G — G’ is one-to-one if and only if

ker ¢ = {eq}.
Example 4.13 (Examples of Group Homomorphisms). e ¢ : S, — ({£1},),

6(c) 1, 0 is an even permutation.
o) =
—1, o is an odd permutation.

ker ¢ = A,,.

o det : GL(n,R) — (R*, ")
ker det = SL(n,R).



e Let G be the (additive) group of all real-valued continuous functions on
[0, 1].
¢:G— (R +)

/f

o(x) = e".
Definition 4.14. Let G, G’ be groups. A map ¢ : G — G’ is a group isomor-
phism if it is a bijective group homomorphism.

e ¢: (R +) — (R*-).

Note that if a homomorphism ¢ is bijective, then ¢! : G — G is also
a homomorphism, and consequently, ¢~ is an isomorphism. If there exists an
isomorphism between two groups G and G’, we say that the groups G and G’ are
isomorphic .

Example 4.15. Recall Definition 3.1 and Exercise 3.2.

Letn > 2. Let H = {rg,r1,72,...,7,_1} be the subgroup of D,, consisting
of all rotations, where r; denotes the anticlockwise rotation by the angle 27 /n,
and rj, = r%. Then, H is isomorphic to Z,, = (Z,, +z, ).

Proof of Example 4.15. Define ¢ : H — Z,, as follows:
o(ry) =k, ke{0,1,2,...,n—1}.

For any k € Z, let ke {0,1,2,...,n — 1} denote the remainder of the division
of k by n. By the Division Theorem for Integers, we have:

k=ng+k
for some integer g € Z.
It now follows from ord r; = n that, for all r;,r; € H, we have:
riry = rirl =t

— anHJrJ

Hence,

= ¢(r;) +z, &(r;5).
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This shows that ¢ is a homomorphism. It is clear that ¢ is surjective, which
then implies that ¢ is one-to-one, for the two groups have the same size. Hence,
¢ is a bijective homomorphism, i.e. an isomorphism. O
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