Math 2070 Week 4

Lagrange's Theorem, Generators, Group Homomorphisms

4.1 Lagrange's Theorem

Theorem 4.1 (Lagrange's Theorem). Let G be a finite group. Let H be subgroup of G, then |H| divides |G|. More precisely, $|G| = [G : H] \cdot |H|$.

Proof of Lagrange's Theorem. We already know that the left cosets of H partition G. That is:

$$G = a_1 H \sqcup a_2 H \sqcup \ldots \sqcup a_{[G:H]} H,$$

where $a_i H \cap a_j H = \emptyset$ if $i \neq j$. Hence, $|G| = \sum_{i=1}^{[G:H]} |a_i H|$.

The theorem follows if we show that the size of each left coset of H is equal to |H|.

For each left coset S of H, pick an element $a \in S$, and define a map $\psi : H \longrightarrow S$ as follows:

$$\psi(h) = ah.$$

We want to show that ψ is bijective.

For any $s \in S$, by definition of a left coset (as an equivalence class) we have s = ah for some $h \in H$. Hence, ψ is surjective.

If $\psi(h') = ah' = ah = \psi(h)$ for some $h', h \in H$, then $h' = a^{-1}ah' = a^{-1}ah = h$. Hence, ψ is one-to-one.

So we have a bijection between two finite sets. Hence, |S| = |H|.

Corollary 4.2. Let G be a finite group. The order of every element of G divides the order of G.

Since G is finite, any element of $g \in G$ has finite order ord g. Since the order of the subgroup:

$$H = \langle g \rangle = \{e, g, g^2, \dots, g^{(\operatorname{ord} g)-1}\}$$

is equal to ord g, it follows from Lagrange's Theorem that $\operatorname{ord} g = |H|$ divides |G|.

Corollary 4.3. *If the order of a group G is prime, then G is a cyclic group.*

Corollary 4.4. If a group G is finite, then for all $g \in G$ we have:

 $g^{|G|} = e.$

Corollary 4.5. Let G be a finite group. Then a nonempty subset H of G is a subgroup of G if and only if it is closed under the group operation of G (i.e. $ab \in H$ for all $a, b \in H$).

Proof of Corollary 4.5. It is easy to see that if H is a subgroup, then it is closed under the group operation. The other direction is left as an **Exercise**.

Example 4.6. Let *n* be an integer greater than 1. The group A_n of even permutations on a set of *n* elements (see Example 3.4) has order $\frac{n!}{2}$.

Proof of Example 4.6. View A_n as a subgroup of S_n , which has order n!. **Exercise** : Show that $S_n = A_n \sqcup (12)A_n$. Hence, we have $[S_n : A_n] = 2$. It now follows from Theorem 4.1 (Lagrange's Theorem) that:

It now follows from Theorem 4.1 (Lagrange's Theorem) that:

$$|A_n| = \frac{|S_n|}{[S_n : A_n]} = \frac{n!}{2}.$$

4.1.1 WeBWorK

- 1. WeBWorK
- 2. WeBWorK
- 3. WeBWorK
- 4. WeBWorK

4.2 Generators

Let G be a group, X a nonempty subset of G. The subset of G consisting of elements of the form:

$$g_1^{m_1}g_2^{m_2}\cdots g_n^{m_n}$$
, where $n \in \mathbb{N}, g_i \in X, m_i \in \mathbb{Z}$,

is a subgroup of G. We say that it is the subgroup of G generated by X. If $X = \{x_1, x_2, \dots, x_l\}, l \in \mathbb{N}$. We often write:

$$\langle x_1, x_2, \ldots, x_l \rangle$$

to denote the subgroup generated by X.

Example 4.7. In D_n , $\{r_0, r_1, \ldots, r_{n-1}\} = \langle r_1 \rangle$.

If there exists a finite number of elements $x_1, x_2, \ldots, x_l \in G$ such that $G = \langle x_1, x_2, \ldots, x_l \rangle$, we say that G is **finitely generated**.

For example, every cyclic group is finitely generated, for it is generated by one element.

Every finite group is finitely generated, since we may take the finite generating set X to be G itself.

Example 4.8. Consider $G = D_3$, and its subgroup $H = \{r_0, r_1, r_2\}$ consisting of its rotations. (We use the convention that r_k is the anticlockwise rotation by an angle of $2\pi k/3$).

By Lagrange's Theorem, the index of H in G is [G : H] = |G| / |H| = 2. This implies that $G = H \sqcup gH$ for some $g \in G$. Since gH = H if $g \in H$, we may conclude that $g \notin H$. So, g is a reflection.

Conversely, for any reflection $s \in D_3$, the left coset sH is disjoint from H. We have therefore $G = H \sqcup s_1 H = H \sqcup s_2 H = H \sqcup s_3 H$, which implies that $s_1 H = s_2 H = s_3 H$.

In particular, for a fixed $s = s_i$, any element in G is either a rotation or equal to sr_i for some rotation r_i . Since H is a cyclic group, generated by the rotation r_1 , we have $D_3 = \langle r_1, s \rangle$, where s is any reflection in D_3 .

4.3 Group Homomorphisms

Definition 4.9. Let G = (G, *), G' = (G', *') be groups. A group homomorphism ϕ from G to G' is a map $\phi : G \longrightarrow G'$ which satisfies:

$$\phi(a * b) = \phi(a) *' \phi(b),$$

for all $a, b \in G$.

Claim 4.10. If $\phi : G \longrightarrow G'$ is a group homomorphism, then:

- 1. $\phi(e_G) = e_{G'}$.
- 2. $\phi(g^{-1}) = \phi(g)^{-1}$, for all $g \in G$.
- 3. $\phi(g^n) = \phi(g)^n$, for all $g \in G$, $n \in \mathbb{Z}$.

Proof of Claim 4.10. We prove the first claim, and leave the rest as an exercise. Since e_G is the identity element of G, we have $e_G * e_G = e_G$. On the other hand, since ϕ is a group homomorphism, we have:

$$\phi(e_G) = \phi(e_G * e_G) = \phi(e_G) *' \phi(e_G).$$

Since G' is a group, $\phi(e_G)^{-1}$ exists in G', hence:

$$\phi(e_G)^{-1} *' \phi(e_G) = \phi(e_G)^{-1} *' (\phi(e_G) *' \phi(e_G))$$

The left-hand side is equal to $e_{G'}$, while by the associativity of *' the right-hand side is equal to $\phi(e_G)$.

Let $\phi: G \longrightarrow G'$ be a homomorphism of groups. The **image** of ϕ is defined as:

$$\operatorname{im} \phi := \phi(G) := \{g' \in G' : g' = \phi(g) \text{ for some } g \in G\} \subseteq G'$$

The **kernel** of ϕ is defined as:

$$\ker \phi = \{g \in G : \phi(g) = e_{G'}\} \subseteq G.$$

Claim 4.11. The image of ϕ is a subgroup of G'. The kernel of ϕ is a subgroup of G.

Claim 4.12. A group homomorphism $\phi : G \longrightarrow G'$ is one-to-one if and only if $\ker \phi = \{e_G\}.$

Example 4.13 (Examples of Group Homomorphisms). • $\phi : S_n \longrightarrow (\{\pm 1\}, \cdot),$

$$\phi(\sigma) = \begin{cases} 1, & \sigma \text{ is an even permutation.} \\ -1, & \sigma \text{ is an odd permutation.} \end{cases}$$

 $\ker \phi = A_n.$

• det : $\operatorname{GL}(n, \mathbb{R}) \longrightarrow (\mathbb{R}^{\times}, \cdot)$ ker det = $\operatorname{SL}(n, \mathbb{R})$. • Let G be the (additive) group of all real-valued continuous functions on [0, 1].

$$\phi: G \longrightarrow (\mathbb{R}, +)$$
$$\phi(f) = \int_0^1 f(x) \, dx.$$

 $\phi(x) = e^x.$

• $\phi: (\mathbb{R}, +) \longrightarrow (\mathbb{R}^{\times}, \cdot).$

Definition 4.14. Let G, G' be groups. A map $\phi : G \longrightarrow G'$ is a group isomorphism if it is a bijective group homomorphism.

Note that if a homomorphism ϕ is bijective, then $\phi^{-1} : G' \longrightarrow G$ is also a homomorphism, and consequently, ϕ^{-1} is an isomorphism. If there exists an isomorphism between two groups G and G', we say that the groups G and G' are **isomorphic**.

Example 4.15. Recall Definition 3.1 and Exercise 3.2.

Let n > 2. Let $H = \{r_0, r_1, r_2, \dots, r_{n-1}\}$ be the subgroup of D_n consisting of all rotations, where r_1 denotes the anticlockwise rotation by the angle $2\pi/n$, and $r_k = r_1^k$. Then, H is isomorphic to $\mathbb{Z}_n = (\mathbb{Z}_n, +_{\mathbb{Z}_n})$.

Proof of Example 4.15. Define $\phi : H \longrightarrow \mathbb{Z}_n$ as follows:

$$\phi(r_k) = k, \quad k \in \{0, 1, 2, \dots, n-1\}.$$

For any $k \in \mathbb{Z}$, let $\overline{k} \in \{0, 1, 2, ..., n-1\}$ denote the remainder of the division of k by n. By the Division Theorem for Integers, we have:

$$k = nq + k$$

for some integer $q \in \mathbb{Z}$.

It now follows from $\operatorname{ord} r_1 = n$ that, for all $r_i, r_j \in H$, we have:

$$r_i r_j = r_1^i r_1^j = r_1^{i+j}$$
$$= r_1^{nq+\overline{i+j}}$$
$$= (r_1^n)^q r_1^{\overline{i+j}}$$
$$= r_{\overline{i+j}}.$$

Hence,

$$\phi(r_i r_j) = \phi(r_{\overline{i+j}})$$

= $\overline{i+j}$
= $i + \mathbb{Z}_n j$
= $\phi(r_i) + \mathbb{Z}_n \phi(r_j).$

This shows that ϕ is a homomorphism. It is clear that ϕ is surjective, which then implies that ϕ is one-to-one, for the two groups have the same size. Hence, ϕ is a bijective homomorphism, i.e. an isomorphism.