Math 2070 Week 13

Field Extensions, Finite Fields

13.1 Field Extensions

Definition 13.1. Let R be aring. A subset S of R is said to be a subring of R if
itis a ring under the addition + and multiplication X i associated with R, and its
additive and multiplicative identity elements 0, 1 are those of R.

Remark. To show that a subset S of a ring R is a subring, it suffices to show that:
e S contains the additive and multiplicative identity elements of R.
e S'is "closed under addition": a +r b € S forall a,b € S.
e S is "closed under multiplication": a xz b € S forall a,b € S.

e S'is closed under additive inverse: For all a € S, the additive inverse —a of
a in R belongs to S.

Definition 13.2. A subfield % of a field K is a subring of K" which is a field.

In particular, for each nonzero element » € £ C K. The multiplicative inverse
of rin K lies k.

Definition 13.3. Let K be a field and % a subfield. Let o be an element of K. We
define k() to be the smallest subfield of K containing & and «. In other words,
if I is a subfield of K which contains k and «, then F' O k(«). We say that k(«)
is obtained from & by adjoining «.

Theorem 13.4. Let k be a subfield of a field K. Let o be an element of K.



1. If ais a root of a nonzero polynomial f € k(x| (viewed as a polynomial in
K [x] with coefficients in k), then « is a root of an irreducible polynomial
p € klx], such that p|f in k[z].

2. Let p be an irreducible polynomial in k|x] of which « is a root. Then, the
map ¢ : klz]/(p) — K, defined by:

¢ (Z cjal + (p)> =
j=0 j=0

is a well-defined one-to-one ring homomorphism with im ¢ = k(«). (Here,
> o c;x? + (p) is the congruence class of > o cjx? € k[z] modulo (p).)

Hence,

klz]/(p) = k(e).

3. If a, 8 € K are both roots of an irreducible polynomial p in k|x], then there
exists a ring isomorphism o : k(o) — k(B), witho(a) = S and o(s) = s,
forall s € k.

4. Let p be an irreducible polynomial in k[z| of which « is a root. Then, each
element in k(«) has a unique expression of the form:

-1
co+coa+-+c, 0",

where ¢; € k, and n = degp.

Remark. Suppose p is an irreducible polynomial in k[x] of which o € K is aroot.
Part 4 of the theorem essentially says that k(«) is a vectors space of dimension
deg p over k, with basis:

{1,a,0?, ..., 0"t}

Example 13.5. Consider & = Q as a subfield of X = R. The element o € v/2 €
R is a root of the the polynomial p = 2% — 2 € Q[z], which is irreducible in Q[z]
by the Eisenstein’s Criterion for the prime 2.

The theorem applied to this case says that Q(«), i.e. the smallest subfield of
R containing Q and «, is equal to the set:

{co + cra + ca? i ¢; € Q}

The addition and multiplication operations in Q(«) are those associated with R,
in other words:

(co + cra+ ca0?) + (b + brav + bar®)
= (Co + bo) + (01 + bl)CY + (Cz + bQ)C]fQ,



(co + cra + coa?) - (by + b + bya?)
= cobo + cobrav + cobod® + c1bgar + ¢1b102
+ 190 + c2bpa® + cabia + cobya?
= (cobo + 2¢1bg + 2¢2b1) + (coby + c1bo + 2¢9b2) v
+ (coby + c1by + coby)a?

Exercise 13.6. Given a nonzero v = ¢y + cja + ca? € Q(a), ¢; € Q, find
bo, b1, by € Q such that by + by + bya? is the multiplicative inverse of v in Q(«).

Proof of Exercise 13.6. (of Theorem 13.4])

1. Define a map ¢ : k[x] — K as follows:
WY (Z cja;j> = ch&j.

Exercise: 1 is a ring homomorphism.

By assumption, f lies in ker 1. Since £ is a field, the ring k[z] is a PID. So,
there exists p € k[x] such that ker ¢ = (p). Hence, p|f in k[z].

By the First Isomorphism Theorem, im ) is a subring of K which is isomor-
phic to k[z]/(p). In particular, im ¢ is an integral domain because / has no
zero divisors. Hence, by Theorem 11.20/, the polynomial p is an irreducible
in k[z].

Since p € (p) = ker ¢, we have 0 = ¢(p) = p(«). Hence, « is a root of p.

2. If f+(p) = g+(p) in k[z]/(p), then g— f € (p), or equivalently: g = f+pq
for some ¢ € k[z].

Hence, ¢(g + (p)) = f(a) + p(a)q(a) = f(a) = o(f + (p)).

This shows that ¢ is a well-defined map. We leave it as an exercise to show
that ¢ is a one-to-one ring homomorphism.

We now show that im ¢ = k(«). By the First Isomorphism Theorem, im ¢
is isomorphic to k[z]/(p), which is a field since p is irreducible. Moreover,
a = ¢(z + (p)) lies in im ¢. Hence, im ¢ is a subfield of K containing c.

Since each element in im ¢ has the form Z?:o cjad, where ¢; € k, and
fields are closed under addition and multiplication, any subfield of K which
contains k£ and o must contain im ¢. This shows that im ¢ is the smallest
subfield of K containing k and «.. Hence, k[x]/(p) = im ¢ = k().
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3. Define ¢ : k[x]/(p) — k() as follows:

@' (Z c;x) + (p)) = Zc]ﬂj.

By the same reasoning applied to ¢ before, the map ¢’ is a well-defined ring
isomorphism, with:

(x4 (p)=p8, ¢(s+(p)=sforallscek.

It is then easy to see that the map o := ¢/ 0o ¢ : k(o) — k(p) is the
desired isomorphism between k(«) and k().

4. Since ¢ in Part 2 is an isomorphism onto im ¢ = k(«), we know that each
element v € k() is equal to ¢(f + (p)) = f(a) := > c¢;ja? for some
[ = ¢l € klz].
By the division theorem for k[x]. There exist m,r € k[z| such that f =
mp + r, with degr < degp = n. In particular, f + (p) = r + (p) in
klz]/(p).
Write r = Z?;é bjx?, with b; = 0if j > degr.
We have:

n—1
7= + (1) = 00r+ (p) = Db,
5=0
It remains to show that this expression for +y is unique. Suppose v = g(a) =
27;01 ba’ for some g = Z;:& Vil € klx].
Then, g(«) = r(a) = ~ implies that ¢(g + (p)) = é(r + (p)), hence:
(g —7)+ (p) € ker ¢.

Since ¢ is one-to-one, we have (¢ — ) = 0 modulo (p), which implies that
pl(g — ) in klz].

Since deg g, degr < deg p, this implies that ¢ — r = 0. So, the expression
v =by+bia+ -+ b,_1a" ! is unique.

O
Terminology:
e If k is a subfield of K, we say that K is a field extension of £.

e Let o be an element in a field extension KX of a field k. If there exists a
polynomial p € k[z] of which « is a root, then « is said to be algebraic
over k.



o If o € K is algebraic over k, then there exists a unique monic irreducible
polynomial p € k[x] of which « is a root (Exercise). This polynomial p is
called the minimal polynomial of « over k.

For example, v/2 € R is algebraic over Q. Its minimal polynomial over Q is
3 — 2.

Exercise 13.7. Find the minimal polynomial of 2 — V6 € R over Q, if it exists.
Exercise 13.8. Find the minimal polynomial of v/5 over Q.

Exercise 13.9. Express the multiplicative inverse of v = 2 + +/5 in Q(+/5) in the

form: )
'7_1 =Co+ 01\3/54‘ Co (%> )

where ¢; € Q, if possible.

13.2 WeBWork

1. WeBWorK
2. WeBWorK
3. WeBWorK
4. WeBWorK
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