
Math 2070 Week 12

Rational Root Theorem, Gauss’s Theorem, Eisenstein’s
Criterion

12.1 Polynomials over Z and Q
Theorem 12.1 (Rational Root Theorem). Let f = a0 + a1x + · · · + anx

n, be a
polynomial in Q[x], with ai ∈ Z, an 6= 0. Every rational root r of f in Q has the
form r = b/c (b, c ∈ Z) where b|a0 and c|an.

Proof of Rational Root Theorem. Let r = b/c be a rational root of f , where b, c
are relatively prime integers. We have:

0 =
n∑

i=0

ai(b/c)
i

Multiplying both sides of the above equation by cn, we have:

0 = a0c
n + a1c

n−1b+ a2c
n−2b2 + · · ·+ anb

n,

or equivalently:

a0c
n = −(a1cn−1b+ a2c

n−2b2 + · · ·+ anb
n).

Since b divides the right-hand side, and b and c are relatively prime, b must divide
a0.

Similarly, we have:

anb
n = −(a0cn + a1c

n−1b+ a2c
n−2b2 + · · ·+ an−1cb

n−1).

Since c divides the right-hand side, and b and c are relatively prime, c must divide
an.
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Definition 12.2. A polynomial f ∈ Z[x] is said to be primitive if the gcd of its
coefficients is 1.

Remark. Note that if f is monic, i.e. its leading coefficient is 1, then it is primi-
tive.

If d is the gcd of the coefficients of f , then 1
d
f is a primitive polynomial in

Z[x].

Lemma 12.3 (Gauss’s Lemma). If f, g ∈ Z[x] are both primitive, then fg is
primitive.

Proof of Gauss’s Lemma. Write f =
∑m

k=0 akx
k, g =

∑n
k=0 bkx

k. Then, fg =∑m+n
k=0 ckx

k, where:
ck =

∑
i+j=k

aibj.

Suppose fg is not primitive. Then, there exists a prime p such that p divides ck
for k = 0, 1, 2, . . . ,m+ n.

Since f is primitive, there exists a least u ∈ {0, 1, 2, . . . ,m} such that au is
not divisible by p.

Similarly, since g is primitive, there is a least v ∈ {0, 1, 2, . . . , n} such that bv
is not divisible by p. We have:

cu+v =
∑

i+j=u+v
(i,j)6=(u,v)

aibj + aubv,

hence:
aubv = cu+v −

∑
i+j=u+v

i<u

aibj −
∑

i+j=u+v
j<v

aibj.

By the minimality conditions on u and v, each term on the right-hand side of the
above equation is divisible by p.

Hence, p divides aubv, which by Euclid’s Lemma implies that p divides either
au or bv, a contradiction.

Lemma 12.4. Every nonzero f ∈ Q[x] has a unique factorization:

f = c(f)f0,

where c(f) is a positive rational number, and f0 is a primitive polynomial in Z[x].

Definition 12.5. The rational number c(f) is called the content of f .
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Proof of Definition 12.5. Existence:
Write f =

∑n
k=0(ak/bk)x

k, where ak, bk ∈ Z. Let B = b0b1 · · · bn. Then,
g := Bf is a polynomial in Z[x]. Let d be the gcd of the coefficients of g. Let
D = ±d, with the sign chosen such that D/B > 0. Observe that f = c(f)f0,
where

c(f) = D/B,

and
f0 :=

B

D
f =

1

D
g

is a primitive polynomial in Z[x].
Uniqueness:
Suppose f = ef1 for some positive e ∈ Q and primitive f1 ∈ Z[x]. We have:

ef1 = c(f)f0.

Writing e/c(f) = u/v where u, v are relatively prime positive integers, we have:

uf1 = vf0.

Since gcd(u, v) = 1, by Euclid’s Lemma the above equation implies that v divides
each coefficient of f1, and u divides each coefficient of f0. Since f0 and f1 are
primitive, we conclude that u = v = 1. Hence, e = c(f), and f1 = f0.

Corollary 12.6. For f ∈ Z[x] ⊆ Q[x], we have c(f) ∈ Z.

Proof of Corollary 12.6. Let d be the gcd of the coefficients of f . Then, (1/d)f
is a primitive polynomial, and

f = d

(
1

d
f

)
is a factorization of f into a product of a positive rational number and a primitive
polynomial in Z[x]. Hence, by uniqueness of c(f) and f0, we have c(f) = d ∈
Z.

Corollary 12.7. Let f, g, h be nonzero polynomials in Q[x] such that f = gh.
Then, f0 = g0h0 and c(f) = c(g)c(h).

Proof of Corollary 12.7. The condition f = gh implies that:

c(f)f0 = c(g)c(h)g0h0,

where f0, g0, h0 are primitive polynomials and c(f), c(g), c(h) are positive ratio-
nal numbers. By a previous result g0h0 is primitive. It now follows from the
uniqueness of c(f) and f0 that f0 = g0h0 and c(f) = c(g)c(h).
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Theorem 12.8 (Gauss’s Theorem). Let f be a nonzero polynomial in Z[x]. If
f = GH for some G,H ∈ Q[x], then f = gh for some g, h ∈ Z[x], where
deg g = degG, deg h = degH .

Consequently, if f cannot be factored into a product of polynomials of smaller
degrees in Z[x], then it is irreducible as a polynomial in Q[x].

Proof of Gauss’s Theorem. Suppose f = GH for some G,H in Q[x]. Then f =
c(f)f0 = c(G)c(H)G0H0, where G0, H0 are primitive polynomials in Z[x], and
c(G)c(H) = c(f) by the uniqueness of the content of a polynomial.

Moreover, since f ∈ Z[x], its content c(f) lies in Z. Hence, g = c(f)G0 and
h = H0 are polynomials in Z[x], with deg g = degG, deg h = degH , such that
f = gh.

Let p be a prime. Let Fp = Z/pZ ∼= Zp. It is a field, since p is prime. For
a ∈ Z, let a denote the residue of a in Fp.

Exercise: We have a = ap, where ap is the remainder of the division of a by
p.

Theorem 12.9. Let f =
∑n

k=0 akx
k be a polynomial in Z[x] such that p - an

(in particular, an 6= 0). If f :=
∑n

k=0 akx
k is irreducible in Fp[x], then f is

irreducible in Q[x].

Proof of Theorem 12.9. Suppose f is irreducible in Fp[x], but f is not irreducible
in Q[x]. By Gauss’s theorem, there exist g, h ∈ Z[x] such that deg g, deg h <
deg f and f = gh.

Since by assumption p - an, we have deg f = deg f .
Moreover, gh = g · h ( Exercise ).
Hence, f = gh = g · h, where deg g, deg h < deg f . This contradicts the

irreducibility of f in Fp[x].
Hence, f is irreducible in Q[x] if f is irreducible in Fp[x].

Example 12.10. The polynomial f(x) = x4−5x3+2x+3 ∈ Q[x] is irreducible.

Proof of Example 12.10. Consider f = x4 − 5x3 + 2x + 3 = x4 + x3 + 1 in
F2[x]. If we can show that f is irreducible, then by the previous theorem we can
conclude that f is irreducible.

Since F2 = {0, 1} and f(0) = f(1) = 1 6= 0, we know right away that f has
no linear factors. So, if f is not irreducible, it must be a product of two quadratic
factors:

f = (ax2 + bx+ c)(dx2 + ex+ g), a, b, c, d, e, g ∈ F2.
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Note that by assumption a, d are nonzero elements of F2, so a = d = 1. This
implies that, in particular:

1 = f(0) = cg

1 = f(1) = (1 + b+ c)(1 + e+ g)

The first equation implies that c = g = 1. The second equation then implies that
1 = (2 + b)(2 + e) = be. Hence, b = e = 1.

We have:

x4 + x3 + 1 = (x2 + x+ 1)(x2 + x+ 1)

= x4 + 2x3 + 3x2 + 2x+ 1 = x4 + x2 + 1,

a contradiction.
Hence, f is irreducible in F2[x], which implies that f is irreducible in Q[x].

Theorem 12.11 (Eisenstein’s Criterion). Let f = a0 + a1x + · · · + anx
n be a

polynomial in Z[x]. If there exists a prime p such that p|ai for 0 ≤ i < n, but
p - an and p2 - a0, then f is irreducible in Q[x].

Proof of Eisenstein’s Criterion. We prove by contradiction. Suppose f is not ir-
reducible in Q[x]. Then, by Gauss’s Theorem, there exists g =

∑l
k=0 bkx

k,
h =

∑n−l
k=0 ckx

k ∈ Z[x], with deg g, deg h < deg f , such that f = gh.
Consider the image of these polynomials in Fp[x]. By assumption, we have:

anx
n = f = gh.

This implies that g and h are divisors of anxn. Since Fp is a field, unique factor-
ization holds for Fp[x]. Hence, we must have:

g = bux
u, h = cn−ux

n−u,

for some u ∈ {0, 1, 2, . . . , l}.
If u < l, then n− u > n− l ≥ deg h, which cannot hold.
So, we conclude that g = blx

l, h = cn−lx
n−l.

In particular, b0 = c0 = 0 in Fp, which implies that p divides both b0 and c0.
Since a0 = b0c0, we have p2|a0, a contradiction.

Example 12.12. The polynomial x5+3x4− 6x3+12x+3 is irreducible in Q[x].
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