
Math 2070 Week 10

Ideals, Principal Ideal Domains, Quotient Rings

10.1 Ring Homomorphisms - continued
An isomorphism is more than simply a bijective map, for it must preserve alge-
braic structure.

For example, there is a bijective map f : Z → Q , but the two are clearly not
isomorphic as rings:

Suppose φ : Z→ Q is an isomorphism. Then, both φ and φ−1 must send units
to units.

Consider 2 ∈ Q. Since Q is a field, the nonzero element 2 is a unit. So φ−1(2)
must be a unit of Z.

But the only units of Z are±1. Since φ is an homomorphism, we have φ(1) =
1 6= 2.

So, we are left with the case φ(−1) = 2. This cannot hold either, since:

1 = φ((−1)(−1)) = φ(−1)φ(−1)

implies that φ(−1) could only be ±1 6= 2.
So, Z and Q cannot be isomorphic.

Theorem 10.1. The fields Q and Frac(Z) are isomorphic.

Proof of Theorem 10.1. Define a map φ : Q→ Frac(Z) as follows:

φ(a/b) = [(a, b)], ∀ a/b ∈ Q, a, b ∈ Z, b 6= 0.

We first need to show that φ is well-defined. Namely, suppose a/b = c/d in Q,
we need to show that φ(a/b) = [(a, b)] is equal to φ(c/d) = [(c, d)].

This is clear, since a/b = c/d implies that ad = bc, which by definition of
Frac(Z) implies that [(a, b)] = [(c, d)].

We now show that φ is a homomorphism:
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1. φ(1) = φ(1/1) = [(1, 1)], which is indeed the multiplicative identity of
Frac(Z).

2. For a, b, c, d ∈ Z, b, d 6= 0, we have:

φ(a/b+ c/d) = φ((ad+ bc)/(bd)) = [(ad+ bc, bd)]

= [(a, b)] + [(c, d)] = φ(a/b) + φ(c/d)

3. For a, b, c, d ∈ Z, b, d 6= 0, we have:

φ((a/b)(c/d)) = φ((ac)/(bd)) = [(ac, bd)]

= [(a, b)] · [(c, d)] = φ(a/b)φ(c/d)

Finally, we need to show that φ is one-to-one and onto.
Suppose there are a, b, c, d ∈ Z such that φ(a/b) = φ(c/d). Then, by defini-

tion of φ we have [(a, b)] = [(c, d)], which implies that ad = bc, from which it
follows that a/b = c/d as elements of Q. So, φ is one-to-one.

Given [(a, b)] ∈ Frac(Z), a, b ∈ Z, b 6= 0, it is clear that a/b belongs to Q, and
φ(a/b) = [(a, b)]. So φ is onto.

Hence, φ is a bijective homomorphism. In other words, it is an isomorphism.

Theorem 10.2. If F is a field, then Frac(F ) ∼= F .

Proof of Theorem 10.2. Define a map φ : F → Frac(F ) as follows:

φ(s) = [(s, 1)], ∀s ∈ F.

Exercise:

1. Show that φ is a homomorphism.

2. Show that φ is bijective.

Definition 10.3. The kernel of a ring homomorphism φ : A→ B is the set:

kerφ := {a ∈ A : φ(a) = 0}

The image of φ is the set:

imφ := {b ∈ B : b = φ(a) for some a ∈ A}.
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Claim 10.4. A ring homomorphism φ : A → B is one-to-one if and only if
kerφ = {0}.

Proof of Claim 10.4. Suppose φ is one-to-one. For any a ∈ kerφ, we have φ(0) =
φ(a) = 0, which implies that a = 0 since φ is one-to-one. Hence, kerφ = {0}.

Suppose kerφ = {0}. If φ(a) = φ(a′), then:

0 = φ(a) + (−φ(a′)) = φ(a) + (φ(−a′)) = φ(a+ (−a′)),

which implies that a + (−a′) ∈ kerφ = {0}. So, a + (−a′) = 0, which implies
that a = a′. Hence, φ is one-to-one.

Definition 10.5. An ideal I in a commutative ring R is a subset of R which
satisfies the following properties:

1. 0 ∈ I;

2. If a, b ∈ I , then a+ b ∈ I .

3. For all a ∈ I , we have ar ∈ I for all r ∈ R.

If an ideal I is a proper subset of R, we say it is a proper ideal .

Note. If an ideal I contains 1, then r = 1 · r ∈ I for all r ∈ R, which implies
that I = R.

Remark. There is a definition of an ideal in the more general case where the
ring is not necessarily commutative. It is similar to the definition above, except
for one extra condition: ra belongs to I for all a ∈ I , r ∈ R.

Clearly, this general definition coincides with the one above in the special case
that the ring is commutative. In this introductory course, unless otherwise noted,
we will always discuss ideals in the context of commutative rings.

Example 10.6. For any commutative ring R, the set {0} is an ideal, since 0 + 0 =
0, and 0 · r = 0 for all r ∈ R.

Example 10.7. For all m ∈ Z, the set I = mZ := {mn : n ∈ Z} is an ideal:

1. 0 = m · 0 ∈ I;

2. mn1 +mn2 = m(n1 + n2) ∈ I .

3. Given mn ∈ I , for all l ∈ Z, we have mn · l = m · nl ∈ I .

Example 10.8. Recall the homomorphism φ : Z→ Zm defined by φ(n) = n. We
claim that the kernel of φ is:

kerφ = mZ.
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Proof of Example 10.8. If φ(n) = n = 0, then n = mq+0 = mq for some q ∈ Z.
So, n ∈ mZ. Hence, kerφ ⊆ mZ.

Given mn ∈ mZ, where n ∈ Z, the remainder mn of the division of mn by
m is clearly 0, so φ(mn) = 0, which implies that mZ ⊆ kerφ.

Hence, kerφ = mZ.

Claim 10.9. LetA be a commutative ring. If φ : A→ B is a ring homomorphism,
then kerφ is an ideal of A.

Proof of Claim 10.9. 1. Since φ is a homomorphism, we have φ(0) = 0. Hence,
0 ∈ kerφ.

2. If a, b ∈ kerφ, then φ(a + b) = φ(a) + φ(b) = 0 + 0 = 0. Hence,
a+ b ∈ kerφ.

3. Given any a ∈ kerφ, for all r ∈ R we have φ(ar) = φ(a)φ(r) = 0 · φ(r) =
0. Hence, ar ∈ kerφ for all r ∈ R.

Remark.
The claim still holds if we remove the requirement that A be commutative,

and "ideal" is defined using the more general definition mentioned earlier.

10.1.1 WeBWorK
1. WeBWorK

2. WeBWorK

3. WeBWorK

10.2 Principal Ideals
For a fixed finite set of elements a1, a2, . . . , an in a commutative ring R, let
(a1, a2, . . . , an) denote the subset:

{r1a1 + r2a2 + · · ·+ rnan : ri ∈ R}.

Claim 10.10. The set I = (a1, a2, . . . , an) is an ideal of R.

Proof of Claim 10.10. 1. 0 = 0 · a1 + 0 · a2 + · · ·+ 0 · an ∈ I .

2. For
∑

i riai and
∑

i r
′
iai in I , we have

∑
i riai +

∑
i r
′
iai =

∑
i(ri + r′i)ai ∈

I .
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3. Given any
∑

i riai ∈ I , for any r ∈ R we have r
∑

i riai =
∑

i(rri)ai ∈ I .

We call (a1, a2, . . . , an) the ideal generated by a1, a2, . . . , an. An ideal (a) =
{ar : r ∈ R} generated by one element a ∈ R is called a principal ideal .

Note that R = (1) and {0} = (0) are both principal ideals.

Claim 10.11. A nonzero commutative ring R is a field if and only if its only ideals
are {0} and R.

Proof of Claim 10.11. Suppose a nonzero commutative ring R is a field. If an
ideal I of R is nonzero, it contains at least one nonzero element a of R.

Since R is a field, a has a multiplicative inverse a−1 in R. Since I is an ideal,
and a ∈ I , we have 1 = a−1a ∈ I .

So, I is an ideal which contains 1, hence it must be the whole field R.
Conversely, let R be a nonzero commutative ring whose only ideals are {0}

and R.
Given any nonzero element a ∈ R, the principal ideal (a) := {ar : r ∈ R}

generated by a is nonzero because it contains a 6= 0.
Hence, by hypothesis the ideal (a) is necessarily the whole ring R. In particu-

lar, the element 1 lies in (a), which means that there is an r ∈ R such that ar = 1.
This shows that any nonzero element of R is a unit. Hence, R is a field.

Claim 10.12. Let k be a field, and R a nonzero ring. Any ring homomorphism
φ : k → R is necessarily one-to-one.

Proof of Claim 10.12. Since R is not a zero ring, it contains 1 6= 0. So, φ(1) =
1 6= 0, which implies that kerφ is a proper ideal of k. Since k is a field, we have
kerφ = {0}. It now follows from a previous claim that φ is one-to-one.

Example 10.13. For any natural number m > 1, there can be no ring homomor-
phisms from Q to Zm.

The reason is as follows:
By the previous claim, any ring homomorphism from the field Q to Zm must

be one-to-one, but there can be no one-to-one map from the infinite set Q to the
finite set Zm.

Claim 10.14. Given a, b in a commutative ring R. If b = au for some unit u ∈ R,
then (a) = (b).

If R is an integral domain and (a) = (b), then b = au for some unit u ∈ R.

Proof of Claim 10.14. We leave the first part of the claim as an exercise.
We now prove the second part. Suppose (a) = (b). If b = 0, then a is

necessarily zero. So, b = 0 = 0 · 1 = a · 1, and we are done.

5



Now suppose b 6= 0. The condition (a) = (b) implies that there exist u, v ∈ R
such that b = au and a = bv.

Putting the two together, we have:

b = buv,

which implies that b(1− uv) = 0.
Since R is by assumption an integral domain, and b 6= 0, we have 1− uv = 0,

which implies that uv = 1. This shows that u is unit.

Definition 10.15. If R is an integral domain in which every ideal is principal, we
say that R is a Principal Ideal Domain (abbrev. PID).

Theorem 10.16. The ring Z is a principal ideal domain.

Proof of Theorem 10.16. Let I be an ideal of Z. We already know that the zero
ideal {0} = (0) is principal.

So, we may assume that I contains a nonzero element a. Since −1 ∈ Z and I
is an ideal, we have −a = (−1) · a ∈ I . Hence, if I is nonzero, it contains at least
one positive integer.

By the Least Integer Axiom, the ideal I contains a positive integer d which is
smaller than all other positive elements of I . We claim that I = (d).

By the division theorem, for every a ∈ I , we have a = dq + r for some
q, r ∈ Z such that 0 ≤ r < d. But this implies that r = a− dq lies in I , since I is
an ideal.

Since 0 ≤ r < d and d is the minimal positive integer in I , r must necessarily
be zero. This implies that a = dq. Hence, I ⊆ (d).

Conversely, since d ∈ I and I is an ideal, we have dr ∈ I for all r ∈ Z, which
implies that (d) ⊆ I .

Hence, I = (d). In other words, I is a principal ideal generated by d.

We claim that for any field k, the ring of polynomials k[x] is also a PID.
To prove this we first establish the following theorem:

Theorem 10.17 (Division Theorem for Polynomials with Unit Leading Coeffi-
cients). Let R be a commutative ring. For all d, f ∈ R[x], such that the leading
coefficient of d is a unit in R, there exist q, r ∈ R[x] such that:

f = qd+ r,

with deg r < deg d.
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Proof of Division Theorem for Polynomials with Unit Leading Coefficients. The proof
is essentially the same as that of the division theorem for Q[x]. We prove by in-
duction:

The base case corresponds to the case where deg f < deg d; and the inductive
step corresponds to showing that, for any fixed d, the claim holds for f if it holds
for all f ′ with deg f ′ < deg f .

Base case: If deg f < deg d, we take r = f . Then, indeed f = 0 · d+ r, with
deg r < deg d.

Inductive step: Let d =
∑n

i=0 aix
i ∈ R[x] be fixed, where an is a unit in R.

For any given f =
∑m

i=0 bix
i ∈ R[x], m ≥ n, suppose the claim holds for all f ′

with deg f ′ < deg f .
Let:

f ′ = f − a−1n bmx
m−nd.

Then, deg f ′ < deg f , hence by hypothesis there exist q′, r′ ∈ R[x], with deg r′ <
deg d, such that:

f − a−1n bmx
m−nd = f ′ = q′d+ r′,

which implies that:
f = (q′ + a−1n bmx

m−n)d+ r′.

So, f = qd+ r′, where q = q′ + a−1n bmx
m−n ∈ R[x], and deg r′ < deg d.

Theorem 10.18. Let k be a field. Then, k[x] is a PID.

Proof of Theorem 10.18. Since k is a field, the previous claim holds for all d, f ∈
k[x] such that d 6= 0.

Let I be an ideal of k[x].
If I = {0} then, it is principal, since {0} = (0).
Suppose I is nonzero. Let d be the polynomial in I with the least degree

among all nonzero polynomials in I . Since the degree of any nonzero polynomial
is a nonnegative integer, such an element d exists by the Least Integer Axiom. It
is clear that (d) ⊆ I . It remains to show that I ⊆ (d).

For all f ∈ I , by the previous claim we have:

f = qd+ r,

for some q, r ∈ k[x] such that deg r < deg d.
Observe that r = f − qd = f + (−1)qd lies in I . Since d is a nonzero element

of I with the least degree, the element r must necessarily be zero.
In order words f = qd, which implies that f ∈ (d). Hence, I ⊆ (d), and we

may now conclude that I = (d).
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10.3 Quotient Rings
Let R be a commutative ring. Let I be an ideal of R. We define a relation ∼ on R
as follows:

a ∼ b, if a− b ∈ I.
Notation/Terminology: If a ∼ b, we say that a is congruent modulo I to b,

and write:
a ≡ b mod I.

Claim 10.19. Congruence modulo I is an equivalence relation .

Proof of Claim 10.19. • Reflexivity a−a = 0 ∈ I , since I is an ideal; hence,
a ≡ a mod I .

• Symmetry If a − b ∈ I , then b − a = −1(a − b) ∈ I , since I is an ideal
and −1 ∈ R. Hence, a ≡ b mod I implies that b ≡ a mod I .

• Transitivity If a− b ∈ I and b− c ∈ I , then a− c = a + (−b + b)− c =
(a − b) + (b − c) ∈ I , since I , being an ideal, is closed under addition.
Hence, a ≡ b, b ≡ c mod I implies that a ≡ c mod I .

Let R/I be the set of equivalence classes of R with respect to the relation ∼.
Each element of R/I has the form:

r = r + I = {r + a : a ∈ I}, r ∈ R.

Terminology.
We call r the residue of r in R/I .
Note that if r ∈ I , then r̄ = 0̄, since r − 0 = r ∈ I .
Observe that: for all r, r′ ∈ R, and a, a′ ∈ I ,

(r + a) + (r′ + a′) = (r + r′) + (a+ a′) ∈ (r + r′) + I = r + r′,

(r + a) · (r′ + a′) = rr′ + ra′ + r′a+ aa′ ∈ rr′ + I = rr′.

Hence, we may define binary operations +, · on R/I as follows:

r + r′ = r + r′,

r · r′ = rr′,

for all r, r′ ∈ R/I .

Claim 10.20. The set R/I , equipped with the addition + and multiplication ·
defined above, is a commutative ring.
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Proof of Claim 10.20. We note here only that the additive identity element ofR/I
is 0 = 0 + I , the multiplicative identity element of R/I is 1 = 1 + I , and that
−r = −r for all r ∈ R.

We leave the rest of the proof (additive and multiplicative associativity, com-
mutativity, distributativity) as an Exercise.

Claim 10.21. The map π : R→ R/I , defined by

π(r) = r, ∀r ∈ R.

is a surjective ring homomorphism with kernel kerπ = I .

Proof of Claim 10.21. Exercise.

Let m be a natural number. The set:

mZ = {mn : n ∈ Z}

is an ideal of Z.

Claim 10.22. The quotient ring Z/mZ is isomorphic to Zm.

Proof of Claim 10.22. For r ∈ Z, let rm denote the remainder of the division of r
by m.

Exercise: We have r = rm in Z/mZ, where r̄ is the residue of r in Z/mZ.
Define a map φ : Zm −→ Z/mZ as follows:

φ(r) = r̄, ∀ r ∈ Zm.

We claim that φ is a homomorphism:

• φ(1) = 1̄ = 1Z/mZ.

•

φ(r +Zm r
′) = r +Zm r

′ = (r +Z r′)m

= r +Z r′ = r + r′ = φ(r) + φ(r′)

•

φ(r ·Zm r
′) = r ·Zm r

′ = (r ·Z r′)m
= r ·Z r′ = r · r′ = φ(r) · φ(r′)
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Hence, φ is a homomorphism.
Next, we show that φ is bijective:
For all r̄ ∈ Z/mZ, we have φ(rm) = rm = r. Hence, φ is onto.
Suppose r is an element in Zm such that φ(r) = r = 0 in Z/mZ. By definition,

this means that r ∈ mZ, or equivalently, that m|r. Since 0 ≤ r < m, we must
have r = 0. Hence, kerφ = {0}. It now follows from Claim 10.4 that φ is one-to
one.

We conclude that φ : Zm −→ Z/mZ is an isomorphism.

Claim 10.23. Let φ : R −→ R′ be a ring homomorphism. Then, the image of φ:

imφ = {r′ ∈ R′ : r′ = φ(r) for some r ∈ R}

is a ring under the addition and multiplication operations of R′. (In fact, it is a
subring of R′.)

Proof of Claim 10.23. Exercise.

Theorem 10.24 (First Isomorphism Theorem). Let R be a commutative ring. Let
φ : R −→ R′ be a ring homomorphism. Then:

R/ kerφ ∼= imφ,

(i.e. R/ kerφ is isomorphic to imφ.)

Proof of First Isomorphism Theorem. We define a map φ : R/ kerφ −→ imφ as
follows:

φ(r) = φ(r), ∀ r ∈ R,

where r is the residue of r in R/ kerφ.
We first need to check that φ is well-defined. Suppose r = r′, then r′ − r ∈

kerφ. We have:
φ(r′)− φ(r) = φ(r′ − r) = 0.

Hence, φ(r′) = φ(r). So, φ is well-defined.
Next, we show that φ is a homomorphism:

• φ(1) = φ(1) = 1;

• φ(a+ b) = φ(a+ b) = φ(a+ b) = φ(a) + φ(b) = φ(a) + φ(b);

• φ(a · b) = φ(ab) = φ(ab) = φ(a)φ(b) = φ(a)φ(b).
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Finally, we show that φ is a bijection, i.e. one-to-one and onto.
For any r′ ∈ imφ, there exists r ∈ R such that φ(r) = r′. Since φ(r) =

φ(r) = r′, the map φ is onto.
Let r be an element in R such that φ(r) = φ(r) = 0. We have r ∈ kerφ,

which implies that r = 0 in R/ kerφ. Hence, kerφ = {0}, and it follows from
Claim 10.4 that φ is one-to-one.

Corollary 10.25. If a ring homomorphism φ : R −→ R′ is surjective, then:

R′ ∼= R/ kerφ
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