# Math 2070 Week 1

# Groups

# 1.1 Overview

## • Groups

- How many ways are there to color a cube, such that each face is either black or white?

Answer: 10. Why?

- How many ways are there to form a triangle with three sticks of equal lengths, colored red, green and blue, respectively?
- What are the symmetries of an equilateral triangle?

**Dihedral Group** D<sub>3</sub> IMAGE

#### • Rings

- Euclidean Algorithm.
- Chinese Remainder Theorem.
- Partial Fraction Decomposition.
- Algebraic Extension of Fields.

# 1.2 Groups

**Definition 1.1.** A group G is a set equipped with a binary operation  $* : G \times G \longrightarrow$ G (typically called **group operation** or "**multiplication**"), such that:

• Associativity

$$(a * b) * c = a * (b * c).$$

for all  $a, b, c \in G$ . In other words, the group operation is associative.

• Existence of an Identity Element

*There is an element*  $e \in G$ *, called an* **identity element** *, such that:* 

$$g \ast e = e \ast g = g,$$

for all  $g \in G$ .

#### • Invertibility

*Each element*  $g \in G$  *has an* **inverse**  $g^{-1} \in G$ *, such that:* 

$$g^{-1} * g = g * g^{-1} = e.$$

- Note that we do not require that a \* b = b \* a.
- We often write ab to denote a \* b.

**Definition 1.2.** If ab = ba for all  $a, b \in G$ . We say that the group operation is commutative, and that G is an abelian group.

**Example 1.3.** *The following sets are groups, with respect to the specified group operations:* 

- $G = \mathbb{Q} \setminus \{0\}$ , where the group operation is the usual multiplication for rational numbers. The identity is e = 1, and the inverse of  $a \in \mathbb{Q} \setminus \{0\}$  is  $a^{-1} = \frac{1}{a}$ . The group G is abelian.
- G = Q, where the group operation is the usual addition + for rational numbers. The identity is e = 0. The inverse of a ∈ Q with respect to + is -a. Note that Q is NOT a group with respect to multiplication. For in that case, we have e = 1, but 0 ∈ Q has no inverse 0<sup>-1</sup> ∈ Q such that 0 ⋅ 0<sup>-1</sup> = 1.

**Exercise 1.4.** Verify that the following sets are groups under the specified binary operation:

- $(\mathbb{Z},+)$
- $(\mathbb{R}, +)$
- $(\mathbb{R}^{\times}, \cdot)$
- $(U_m, \cdot)$ , where  $m \in \mathbb{N}$ ,

$$U_m = \{1, \xi_m, \xi_m^2, \dots, \xi_m^{m-1}\},\$$

and  $\xi_m = e^{2\pi i/m} = \cos(2\pi/m) + i\sin(2\pi/m) \in \mathbb{C}$ .

• The set of bijective functions  $f : \mathbb{R} \longrightarrow \mathbb{R}$ , where  $f * g := f \circ g$  (i.e. composition of functions).

### 1.2.1 Cayley Table

| * | a     | b     | С     |
|---|-------|-------|-------|
| a | $a^2$ | ab    | ac    |
| b | ba    | $b^2$ | bc    |
| c | ca    | cb    | $c^2$ |

https://en.wikipedia.org/wiki/Cayley\_table

#### **Cayley Table for** D<sub>3</sub>

| *     | $r_0$ | $r_1$ | $r_2$ | $s_0$ | $s_1$ | $s_2$ |
|-------|-------|-------|-------|-------|-------|-------|
| $r_0$ | $r_0$ | $r_1$ | $r_2$ | $s_0$ | $s_1$ | $s_2$ |
| $r_1$ | $r_1$ | $r_2$ | $r_0$ | $s_1$ | $s_2$ | $s_0$ |
| $r_2$ | $r_2$ | $r_0$ | $r_1$ | $s_2$ | $s_0$ | $s_1$ |
| $s_0$ | $s_0$ | $s_2$ | $s_1$ | $r_0$ | $r_2$ | $r_1$ |
| $s_1$ | $s_1$ | $s_0$ | $s_2$ | $r_1$ | $r_0$ | $r_2$ |
| $s_2$ | $s_2$ | $s_1$ | $s_0$ | $r_2$ | $r_1$ | $r_0$ |

https://en.wikipedia.org/wiki/Dihedral\_group

#### 1.2.2 WeBWorK

- 1. WeBWorK
- 2. WeBWorK
- 3. WeBWorK

- 4. WeBWorK
- 5. WeBWorK
- 6. WeBWorK
- 7. WeBWorK
- 8. WeBWorK
- 9. WeBWorK

#### **1.2.3** Matrix Groups

**Example 1.5.** The set  $G = GL(2, \mathbb{R})$  of real  $2 \times 2$  matrices with nonzero determinants is a group under matrix multiplication, with identity element:

$$e = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$

In the group G, we have:

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{-1} = \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

Note that there are matrices  $A, B \in GL(2, \mathbb{R})$  such that  $AB \neq BA$ . Hence  $GL(2, \mathbb{R})$  is not abelian.

The group  $GL(2, \mathbb{R})$  is called a General Linear Group.

**Exercise 1.6.** The set  $SL(2, \mathbb{R})$  of real  $2 \times 2$  matrices with determinant 1 is a group under matrix multiplication.

It is called a Special Linear Group.

#### **1.2.4 Basic Properties**

**Claim 1.7.** *The identity element e of a group G is unique.* 

*Proof.* Suppose there is an element  $e' \in G$  such that e'g = ge' = g for all  $g \in G$ . Then, in particular, we have:

$$e'e = e$$

But since e is an identity element, we also have e'e = e'. Hence, e' = e.

**Claim 1.8.** Let G be a group. For all  $g \in G$ , its inverse  $g^{-1}$  is unique.

*Proof.* Suppose there exists  $g' \in G$  such that g'g = gg' = e. By the associativity of the group operation, we have:

$$g' = g'e = g'(gg^{-1}) = (g'g)g^{-1} = eg^{-1} = g^{-1}.$$

Hence,  $g^{-1}$  is unique.

Let G be a group with identity element e. For  $g \in G$ ,  $n \in \mathbb{N}$ , let:

$$g^{n} := \underbrace{g \cdot g \cdots g}_{n \text{ times}}.$$
$$g^{-n} := \underbrace{g^{-1} \cdot g^{-1} \cdots g^{-1}}_{n \text{ times}}$$
$$g^{0} := e.$$

Claim 1.9. Let G be a group.

*1. For all*  $g \in G$ *, we have:* 

$$(g^{-1})^{-1} = g.$$

2. For all  $a, b \in G$ , we have:

$$(ab)^{-1} = b^{-1}a^{-1}.$$

*3. For all*  $g \in G$ ,  $n, m \in \mathbb{Z}$ , we have:

$$g^n \cdot g^m = g^{n+m}.$$

Proof. Exercise.

**Definition 1.10.** Let G be a group, with identity element e. The order of G is the number of elements in G. The order ord g of an  $g \in G$  is the smallest  $n \in \mathbb{N}$  such that  $g^n = e$ . If no such n exists, we say that g has infinite order.

**Theorem 1.11.** Let G be a group with identity element e. Let g be an element of G. If  $g^n = e$  for some  $n \in \mathbb{N}$ , then ord g divides n.

Proof. Shown in class.