THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS

MATH1010 University Mathematics 2017-2018 Midterm Examination

Name (in print):				
Student ID:	Programme:			Section: MATH1010
	*	*	*	
INSTRUCTIONS to students	:			
1. The examination lasts 9	00 minute	es.		
2. There are 6 problems, w	vorth a to	otal of 100	points.	
3. Answer all questions. Sl	how work	k to justify	all answers	S
4. Answer the questions in the space provided.				
	*	*	*	
FOR MARKERS' USE ONLY	Y:			

FOF

1	
2	
3	
4	
5	
6	
Total	
	/100 points

1. (20 marks) Find $\frac{dy}{dx}$ where:

(a)
$$y = \frac{x^4 + 5x}{1 - e^x}$$

(b) $y = \sin\left(\sqrt{x \ln x}\right)$

(c) $y \sin x + x \cos y = 1$

$$(d) x^y = y, \quad x > 0$$

2. (15 marks) Evaluate the following limits.

(a)
$$\lim_{x \to 0^-} \frac{\sin x}{|x| + 4x}$$

(b)
$$\lim_{x \to +\infty} \frac{\sin x}{x}$$

(c)
$$\lim_{x \to +\infty} (x - \sqrt{x^2 + 1})$$

3. (15 marks) Let a_n be the sequence defined by

$$\begin{cases} a_{n+1} = 1 - (a_n - 1)^2, \text{ for } n \ge 1\\ a_1 = \frac{1}{100}. \end{cases}$$

- (a) Show that $0 \le a_n \le 1$ for any $n \ge 1$. Solution:
- (b) Show that $a_{n+1} a_n \ge 0$ for any $n \ge 1$. Solution:
- (c) Explain whether the limit of a_n exists and find the limit if it exists. Solution:

4. (20 marks) Let n be a positive integer. Let:

$$f(x) = \begin{cases} x^3, & \text{if } x < 0; \\ x^n, & \text{if } x \ge 0. \end{cases}$$

- (a) Find f'(x) for x > 0. Solution:
- (b) Find all positive integers n such that:
 - i. f'(0) exists.
 - ii. f''(0) exists.

(Recall that by definition
$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
.)

Justify your answers.

Solution:

5. (15 marks) Let f be a function which is continuous on [a, b], differentiable in (a, b) and satisfies f(a) = f(b) = 0. By considering the function $e^{x/s}f(x)$, show that for any non-zero real number s there exists $d \in (a, b)$ satisfying

$$sf'(d) + f(d) = 0.$$

Solution:

- 6. (15 marks) Determine whether there is any function satisfying all of the following conditions:
 - (i) f is differentiable in (0,2).
 - (ii) f is continuous on [0, 2].
 - (iii) f satisfies $f(0) = 1, f(2) = 10, f'(x) \le 2$, for each $x \in (0, 2)$.

Give an example of such a function if you think "yes", or explain why no such functions exist if you think "no".

Solution: