THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS

MATH1010 University Mathematics 2016-2017 Midterm Examination

Name (in print): Student ID: Programme: Section: MATH1010 ∗ ∗ ∗ INSTRUCTIONS to students:

- 1. Answer all questions. Show work to justify all answers.
- 2. The examination lasts 90 minutes.
- 3. There are a total of 80 points.
- 4. Answer the questions in the space provided.

∗ ∗ ∗

FOR MARKERS' USE ONLY:

1. (12 marks) Evaluate the following.

(a)
$$
\lim_{x \to 1} \frac{3 - x - x^2 - x^3}{1 - x} =
$$

Solution:

$$
\lim_{x \to 1} \frac{3 - x - x^2 - x^3}{1 - x} \left(\frac{0}{0} \text{ type}\right)
$$

$$
= \lim_{x \to 1} \frac{-1 - 2x - 3x^2}{-1} \text{ (By L'Hopital Rule)}
$$

$$
= 6
$$

(b)
$$
\lim_{x \to +\infty} \frac{e^{2x} + x^3 \cos x}{e^{2x} - x^3 \sin x} =
$$

\nSolution:
\n
$$
\frac{e^{2x} + x^3 \cos x}{e^{2x} - x^3 \sin x}
$$

\n
$$
= \frac{1 + \frac{x^3 \cos x}{e^{2x}}}{1 - \frac{x^3 \sin x}{e^{2x}}}
$$

\n
$$
\to 1 \text{ as } x \to +\infty
$$

Since sin x and cos x are bounded functions and $\forall k \in \mathbb{N}$, $\frac{x^k}{e^x}$ $rac{x^{\kappa}}{e^x} \to 0$ as $x \to \infty$

(c)
$$
\lim_{x \to +\infty} (x - \sqrt{x^2 - 8x + 3}) =
$$

Solution:
 $x - \sqrt{x^2 - 8x + 3} = \frac{x^2 - x^2 + 8x - 3}{x + \sqrt{x^2 - 8x + 3}} = \frac{8 - \frac{3}{x}}{1 + \sqrt{1 - \frac{8}{x} + \frac{3}{x^2}}} \to 4 \text{ as } x \to +\infty$

2. (16 marks) Find $\frac{dy}{dx}$ $rac{dy}{dx}$ if

(a)
$$
y = \frac{e^{2x}}{1+x}
$$

\nSolution:
\n
$$
\frac{dy}{dx} = \frac{(1+x)(2e^{2x}) - e^{2x}(1)}{(1+x)^2} = \frac{e^{2x}(1+2x)}{(1+x)^2}
$$

(b)
$$
y = \ln(2 + \sin(1 + 3x))
$$

Solution:
\n
$$
\frac{dy}{dx} = \frac{1}{2 + \sin(1 + 3x)} \cos(1 + 3x)(3) = \frac{3\cos(1 + 3x)}{2 + \sin(1 + 3x)}
$$

(c)
$$
xy^2 + \cos(x + y) = 1
$$

Solution:
\n
$$
y^{2} + x(2y)\frac{dy}{dx} + \sin(x+y)(1+\frac{dy}{dx}) = 0
$$
\n
$$
(2xy + \sin(x+y))\frac{dy}{dx} = -y^{2} - \sin(x+y)
$$
\n
$$
\frac{dy}{dx} = \frac{-y^{2} - \sin(x+y)}{2xy + \sin(x+y)}
$$

(d)
$$
y = (\ln x)^x
$$

Solution:
\n
$$
\frac{dy}{dx} = \frac{d}{dx}e^{x\ln(\ln x)} = e^{x\ln(\ln x)}\left(\ln(\ln x) + \frac{x}{\ln x} \cdot \frac{1}{x}\right) = (\ln x)^{x-1}(\ln x \ln(\ln x) + 1)
$$

3. (10 marks) Evaluate the following limits.

(a)
$$
\lim_{x \to 0} \frac{\tan^{-1} x}{1 - \sqrt{1 - x}}
$$
 (tan⁻¹ x = arctan x is the inverse of tangent.)

Solution:
\n
$$
\lim_{x \to 0} \frac{\tan^{-1} x}{1 - \sqrt{1 - x}} \left(\frac{0}{0} \text{ type}\right)
$$
\n
$$
= \lim_{x \to 0} \frac{\frac{1}{1 + x^2}}{-\frac{1}{2} \sqrt{1 - x}} \text{ (By L'Hopital Rule)}
$$
\n
$$
= 2
$$

(b)
$$
\lim_{x\to 0} \left(\frac{1}{\ln(1+x)} - \frac{1}{\sin x} \right)
$$

\nSolution:
\n $\lim_{x\to 0} \left(\frac{1}{\ln(1+x)} - \frac{1}{\sin x} \right)$
\n $= \lim_{x\to 0} \frac{\sin x - \ln(1+x)}{\sin x \ln(1+x)} \left(\frac{0}{0} \text{type} \right)$
\n $= \lim_{x\to 0} \frac{\cos x - \frac{1}{1+x}}{\cos x \ln(1+x) + \frac{\sin x}{1+x}}$ (By L'Hopital Rule)
\n $= \lim_{x\to 0} \frac{(x+1)\cos x - 1}{(x+1)\cos x \ln(x+1) + \sin x} \left(\frac{0}{0} \text{type} \right)$
\n $= \lim_{x\to 0} \frac{\cos x - (1+x)\sin x}{\cos x \ln(1+x) - (1+x)\sin x \ln(1+x) + (1+x)\cos x \frac{1}{1+x} + \cos x}$
\n(By L'Hopital Rule)
\n $= \frac{1}{2}$

4. (12 marks) Let a_n be the sequence defined by

$$
\begin{cases} a_{n+1} = 3 - \frac{1}{a_n}, \text{ for } n \ge 1\\ a_1 = 1. \end{cases}
$$

- (a) Show that $1 \le a_n \le 3$ for any $n \ge 1$.
- (b) Show that $a_{n+1} a_n > 0$ for any $n \geq 1$.
- (c) Explain whether the limit of a_n exists and find the limit if it exists.

Solution:

(a) $\forall n \geq 1$, let P(n)be the proposition " $1 \leq a_n \leq 3$ ". $a_1 = 1$ Hence, $P(1)$ is true. Assume $\exists k \ge 1$ s.t. $P(k)$ is true. i.e. $1 \le a_k \le 3$ Then, when $n = k + 1$, $1 \leq 3 - \frac{1}{1}$ 1 $\leq 3-\frac{1}{2}$ a_k $= a_{k+1} \leq 3 - \frac{1}{2}$ 3 \leq 3 (By assumption) Hence, $P(k + 1)$ is also true. By the principle of Mathematical Induction, $P(n)$ is true $\forall n \geq 1$. (b) $\forall n \geq 1$, let P(n)be the proposition " $a_{n+1} - a_n > 0$ ".

When
$$
n = 1
$$
,
\n $a_2 = 3 - \frac{1}{1} = 2$
\n $a_2 - a_1 = 1$
\nHence, P(1) is true.
\nAssume $\exists k \ge 1$ s.t. P(k) is true. i.e. $a_{k+1} - a_k > 0$
\nThen, when $n = k + 1$,
\n $a_{k+2} - a_{k+1} = 3 - \frac{1}{a_{k+1}} - 3 + \frac{1}{a_k} = \frac{a_{k+1} - a_k}{a_k a_{k+1}} > 0$ (By assumption and (a))
\nHence, P(k + 1) is also true.
\nBy the principle of Mathematical Induction, P(n) is true $\forall n \ge 1$.
\n(c) By (a), a_n is bounded, by (b), a_n is monotonically increasing.

By Monotone Convergence Theorem, limit of a_n exists. Let L denote limit of a_n , By (a), $1 \leq L \leq 3$ $L = 3 - \frac{1}{5}$ L $L^2 - 3L + 1 = 0$ $L =$ 3 − $^+$, 5 2 (rejected) or $L =$ $3 + \sqrt{5}$ 2

5. (15 marks) Let

$$
f(x) = \begin{cases} x^2 \sin(\ln|x|), & \text{if } x \neq 0\\ 0, & \text{if } x = 0. \end{cases}
$$

- (a) Write down the first derivative of the function $\ln |x|$ for $x \neq 0$. No working steps or proof is required.
- (b) Find $f'(x)$ for $x \neq 0$.
- (c) Find $f'(0)$.
- (d) Explain whether $f'(x)$ is differentiable at $x = 0$.

Solution:

(a)
$$
\frac{d}{dx}(\ln|x|) = \frac{1}{x}
$$

\n(b)
$$
\forall x \neq 0, f'(x) = 2x \sin(\ln|x|) + x^2 \cos(\ln|x|) \frac{1}{x} = x(2 \sin(\ln|x|) + \cos(\ln|x|))
$$

\n(c) Consider
$$
\frac{f(h) - f(0)}{h} = \frac{h^2 \sin(\ln|h|)}{h} = h \sin(\ln|h|) \rightarrow 0 \text{ as } h \rightarrow 0
$$

\nsince
$$
\sin x
$$
 is a bounded function.
\ni.e.
$$
f'(0) = 0
$$

\n(d) Consider
$$
\frac{f'(h) - f'(0)}{h}
$$

\n
$$
= \frac{h(2 \sin(\ln|h|) + \cos(\ln|h|)) - 0}{h}
$$
 (By (b) and(c))
\n
$$
= 2 \sin(\ln|h|) + \cos(\ln|h|)
$$

\n
$$
\forall n \ge 1, \text{ let } x_n = \exp(-n\pi).
$$

\n
$$
x_n \rightarrow 0 \text{ as } n \rightarrow \infty.
$$

\nThen, consider
$$
\frac{f'(x_n) - f'(0)}{x_n}
$$

\n
$$
= 2 \sin(\ln|x_n|) + \cos(\ln|x_n|)
$$

\n
$$
= 2 \sin(-n\pi) + \cos(-n\pi)
$$

\n
$$
= (-1)^n
$$

\n
$$
(-1)^n \text{ is not a convergent sequence.}
$$

\nTherefore,
$$
f'(x) \text{ is NOT differentiable at } x = 0.
$$

- 6 (15 marks) Let $f(x)$ be a function such that $f'(x)$ is strictly decreasing.
	- (a) Prove that $f'(x + 1) < f(x + 1) f(x) < f'(x)$ for any x.
	- (b) Prove that

$$
f'(1) + f'(2) + f'(3) < f(3) - f(0) < f'(0) + f'(1) + f'(2).
$$

Solution:

(a) By Mean Value Theorem,

$$
\exists c \in (x, x+1) \text{ s.t.}
$$
\n
$$
f'(c) = \frac{f(x+1) - f(x)}{x+1-x} = f(x+1) - f(x)
$$
\nSince $f'(x)$ is strictly increasing,\n
$$
f'(x+1) < f'(c) = f(x+1) - f(x) < f'(x)
$$

(b) By (a), we have

 $f'(3) < f(3) - f(2) < f'(2)$ $f'(2) < f(2) - f(1) < f'(1)$ $f'(1) < f(1) - f(0) < f'(0)$

Sum these 3 inequalities up, we have,

$$
f'(1) + f'(2) + f'(3) < f(3) - f(0) < f'(0) + f'(1) + f'(2).
$$

END OF PAPER