THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS

MATH1010 University Mathematics 2016-2017 Midterm Examination

Name (in print): Student ID: _____ Programme: _____ Section: MATH1010____ * * * **INSTRUCTIONS** to students:

- 1. Answer all questions. Show work to justify all answers.
- 2. The examination lasts 90 minutes.
- 3. There are a total of 80 points.
- 4. Answer the questions in the space provided.

* * *

FOR MARKERS' USE ONLY:

1	
2	
3	
4	
5	
6	
Total	
	/80 points

1. (12 marks) Evaluate the following.

(a)
$$\lim_{x \to 1} \frac{3 - x - x^2 - x^3}{1 - x} =$$

(b)
$$\lim_{x \to +\infty} \frac{e^{2x} + x^3 \cos x}{e^{2x} - x^3 \sin x} =$$

(c)
$$\lim_{x \to -\infty} (x + \sqrt{x^2 - 8x + 3}) =$$

2. (16 marks) Find $\frac{dy}{dx}$ if

(a)
$$y = \frac{e^{2x}}{1+x}$$

Solution:

(b)
$$y = \ln(2 + \sin(1 + 3x))$$

Solution:

(c) $xy^2 + \cos(x+y) = 1$

Solution:

(d)
$$y = (\ln x)^x$$

Solution:

3. (10 marks) Evaluate the following limits.

(a)
$$\lim_{x \to 0} \frac{\tan^{-1} x}{1 - \sqrt{1 - x}}$$
 (tan⁻¹ x = arctan x is the inverse of tangent.)

Solution:

(b)
$$\lim_{x \to 0} \left(\frac{1}{\ln(1+x)} - \frac{1}{\sin x} \right)$$

Solution:

4. (12 marks) Let a_n be the sequence defined by

$$\begin{cases} a_{n+1} = 3 - \frac{1}{a_n}, \text{ for } n \ge 1\\ a_1 = 1. \end{cases}$$

- (a) Show that $1 \le a_n \le 3$ for any $n \ge 1$.
- (b) Show that $a_{n+1} a_n > 0$ for any $n \ge 1$ by mathematical induction.
- (c) Explain whether the limit of a_n exists and find the limit if it exists.

5. (15 marks) Let

$$f(x) = \begin{cases} x^2 \sin(\ln|x|), & \text{if } x \neq 0\\ 0, & \text{if } x = 0. \end{cases}$$

- (a) Write down the first derivative of the function $\ln |x|$ for $x \neq 0$. No working steps or proof is required.
- (b) Find f'(x) for $x \neq 0$.
- (c) Find f'(0).
- (d) Explain whether f'(x) is differentiable at x = 0.

- 6 (15 marks) Let f(x) be a function such that f'(x) is strictly decreasing.
 - (a) Prove that f'(x+1) < f(x+1) f(x) < f'(x) for any x.
 - (b) Prove that

$$f'(1) + f'(2) + f'(3) < f(3) - f(0) < f'(0) + f'(1) + f'(2).$$

END OF PAPER