THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH1010 University Mathematics (Spring 2018) Tutorial 5 CHAK Wai Ho

You can apply mean value theorem or other results covered in MATH1010. Those questions with ∗ may be challenging.

Exercise 1:

Show the following results.

(a) For $x \in [0,1)$, $\log(1-x) \leq -x$ (b) For $x \in \left[0, \frac{1}{2}\right]$ 2 i , $-x - x^2 \leq \log(1 - x)$ (c) Let $c \in [0,1]$. For $x \in [0,1]$,

$$
(1-c)^x \le 1-cx
$$

Remark: For $x \in \left[0, \frac{1}{2}\right]$ 2 $\Big\},$ by (a) and (b), we have

$$
-x - x^2 \le \log(1 - x) \le -x
$$

Exercise 2:

Let $f : \mathbb{R} \to \mathbb{R}$ be a differentiable function. Suppose f' is strictly increasing.

Show that

(a) For any $x \in \mathbb{R}$,

$$
f'(x) < f(x+1) - f(x) < f'(x+1)
$$

(b) For any $n \in \mathbb{N} \setminus \{1\},\$

$$
f'(1)+f'(2)+\ldots+f'(n-1)
$$

Exercise 3 ^(***):

Let $f : \mathbb{R} \to \mathbb{R}$ be a differentiable function.

Let ${x_n} \subset \mathbb{R}$ be a sequence defined by

$$
x_{n+1} = f(x_n)
$$

Suppose there exists $M < 1$ such that $|f'(x)| \leq M$ for any $x \in \mathbb{R}$. Show that

- (1) (**) There exists $z \in \mathbb{R}$ such that $f(z) = z$;
- (2) There is only one $z \in \mathbb{R}$ that satisfies the equation $f(x) = x$;

(3) (*) $\lim_{n \to \infty} x_n = z$.

Remark: You may just attempt (3) by assuming $(1), (2)$.

Appendix

In exercise 3, you are asked to show that the sequence $\{x_n\}$ converges to the fixed point z.

One application of this result is to find the roots of functions. For instance, consider the polynomial equation

$$
x^5 - x - 2 = 0
$$

There is no general formula to solve a polynomial equation with degree 5 or above on \mathbb{R} . However, we may approximate the solution by an iterative method.

Let

$$
g(x) = x^5 - x - 2
$$

We first estimate the interval for which the root of $g(x) = 0$ lies in: Observe that

 $g(1) = -2, g(2) = 28$

By intermediate value theorem, there is a root z lying in the interval $(1, 2)$.

In order to approximate the root z with certain accuracy, we may define an iterative scheme. Before introducing an iterative scheme, we may observe the following:

We can rewrite $g(x) = x^5 - x - 2 = 0$ as

$$
x = (x+2)^{\frac{1}{5}}
$$
 or $x = x^5 - 2$

Question

- (a) Let $f(x) = (x+2)^{\frac{1}{5}}$. Find $f'(x)$.
- (b) Let $f(x) = x^5 2$. Find $f'(x)$.

After calculation, you may notice that for $x \in (1, 2)$,

(a)
$$
|f'(x)| \le \frac{1}{5}
$$
 (b) $|f'(x)| \ge 5$

By exercise 3, if we choose the definition of f in (a), the sequence

$$
x_{n+1} = f(x_n)
$$

will converges to z that satisfies $x = f(x)$. That is,

$$
z = f(z) = (z+2)^{\frac{1}{5}}
$$

Recall that z is the root of g. In other words, the sequence $\{x_n\}$ converges to the root of g.

Hence we come up with an iterative scheme:

$$
x_1 \in (1,2), \quad x_{n+1} = f(x_n) = (x_n + 2)^{\frac{1}{5}}
$$

which will converge to an approximate solution to $g(x) = x^5 - x - 2 = 0$.

Here is an example

Choose
$$
x_1 = 1.5
$$
. Then
\n $x_2 = f(x_1) \approx 1.2847351571$
\n $x_3 = f(x_2) \approx 1.2685280409$
\n $x_4 = f(x_3) \approx 1.2672737615$
\n:
\n:
\n $x_{1000} = f(x_{999}) \approx 1.2671683045$

By computation,

 $g(x_{1000}) \approx -4.44089 \times 10^{-16}$

Therefore, we have a well-approximated solution.

If we take f in (b) as our definition, we have the following observation.

 $x_1 \in (1,2), \quad x_{n+1} = f(x_n) = x_n^5 - 2$ Choose $x_1 = 1.5$. Then $x_2 = f(x_1) = 5.59375$ $x_3 = f(x_2) \approx 5.475 \times 10^3$ $x_4 = f(x_3) \approx 4.918 \times 10^{18}$ $x_5 = f(x_4) \approx 2.877 \times 10^{93}$. . .

Indeed, f is strictly increasing for $x \in [1,\infty)$ by our computation on its derivative, and the sequence does not converge to our solution. Therefore, if we take this definition, the iterative scheme fails.

Remark: f must be a well-defined function on $\mathbb R$ so that the iterative scheme works.

Solution

Exercise 1:

(a) Observe that when $x = 0$, the inequality holds.

Let $f(u) = \log(1 - u)$. Let $x \in (0, 1)$.

Observe that f is continuous on $[0, x]$ and differentiable on $(0, x)$, with

$$
f'(u) = -\frac{1}{1-u} \le -1 \text{ for any } u \in (0,1)
$$

By (Lagrange) Mean Value Theorem, there exists $\xi \in (0, x)$ such that

$$
\frac{\log(1-x)}{x} = \frac{f(x) - f(0)}{x - 0} = f'(\xi) \le -1
$$

Therefore,

$$
\log(1-x) \le -x
$$

(b) Observe that when $x = 0$, the inequality holds.

Let
$$
f(u) = \log(1 - u) + u^2
$$
. Let $x \in (0, \frac{1}{2})$.

Observe that f is continuous on $[0, x]$ and differentiable on $(0, x)$, with

$$
f'(u) = -\frac{1}{1-u} + 2u
$$
 for any $u \in \left(0, \frac{1}{2}\right)$
Observe that $2(1-u) \ge 1$. Then $2u \ge \frac{u}{1-u} = -1 + \frac{1}{1-u}$. Hence $f'(u) \ge -1$.

By (Lagrange) Mean Value Theorem, there exists $\xi \in (0, x)$ such that

$$
\frac{\log(1-x) + x^2}{x} = \frac{f(x) - f(0)}{x - 0} = f'(\xi) \ge -1
$$

Therefore,

$$
\log(1 - x) \ge -x - x^2
$$

(c) Let $c \in [0,1], x \in [0,1].$

Observe that when $(c, x) = (0, 0), (0, 1), (1, 0)$ or $(1, 1)$, the inequality holds.

We exclude the above cases and further let $c \in (0,1), x \in (0,1)$.

Originally, we want to show

$$
(1 - c)^x \le 1 - cx
$$

$$
(1 - x)^c \le 1 - cx
$$

Interchanging c and x , we have

Let $f(u) = (1 - u)^c$.

Observe that f is continuous on $[0, x]$ and differentiable on $(0, x)$, with

$$
f'(u) = -c(1-u)^{c-1} \text{ for any } u \in (0,1)
$$

Observe that $f'(u) = -c \frac{1}{\sqrt{1-\frac{u^2}{c^2}}}$ $\frac{1}{(1-u)^{1-c}} \leq -c$ (Verify it).

By (Lagrange) Mean Value Theorem, there exists $\xi \in (0, x)$ such that

$$
\frac{(1-x)^c - 1}{x} = \frac{f(x) - f(0)}{x - 0} = f'(\xi) \le -c
$$

Therefore,

$$
(1 - x)^{c} \le 1 - cx
$$

$$
(1 - c)^{x} \le 1 - cx
$$

Exercise 2:

(a) Note that f is continuous on $[x, x + 1]$ and differentiable on $(x, x + 1)$. By (Lagrange) Mean Value Theorem, there exists $\xi \in (x, x + 1)$ such that

$$
f(x+1) - f(x) = \frac{f(x+1) - f(x)}{(x+1) - x} = f'(\xi)
$$

Since f' is strictly increasing,

Interchanging x and c again, we get

$$
f'(x) < f'(\xi) < f'(x+1)
$$

Therefore,

$$
f'(x) < f(x+1) - f(x) < f'(x+1)
$$

(b) For $n \in \mathbb{N} \setminus \{1\}$,

$$
f(n) - f(1) = (f(n) - f(n-1)) + (f(n-1) - f(n-2)) + \dots + (f(3) - f(2)) + (f(2) - f(1))
$$

=
$$
\sum_{m=1}^{n-1} (f(m+1) - f(m))
$$

By (a), for $m = 1, 2, ..., n - 1$,

$$
f'(m) < f(m+1) - f(m) < f'(m+1)
$$

Summing all the terms,

$$
\sum_{m=1}^{n-1} f'(m) < \sum_{m=1}^{n-1} \left(f(m+1) - f(m) \right) < \sum_{m=1}^{n-1} f'(m+1)
$$

Therefore,

$$
f'(1) + f'(2) + \dots + f'(n-1) < f(n) - f(1) < f'(2) + f'(3) + \dots + f'(n)
$$

Exercise 3(1):

Let $h(x) = f(x) - x$. Suppose not, $f(x) \neq x$ for any $x \in \mathbb{R}$.

There are three cases.

- 1 There exists $x, y \in \mathbb{R}$ such that $f(x) x < 0$ and $f(y) y > 0$.
- 2 $f(x) x > 0$ for all $x \in \mathbb{R}$.
- 3 $f(x) x < 0$ for all $x \in \mathbb{R}$.

Case 1

Observe that $h(x) < 0$ and $h(y) > 0$. f is differentiable, and hence continuous. Therefore h is continuous. By intermediate value theorem, there exists z between x and y such that

 $h(z) = 0$

Then $f(z) = z$, which leads to contradiction.

Case 2

We have $f(0) > 0$.

Since f is differentiable on \mathbb{R} , h is differentiable on \mathbb{R} . Let $x > 0$. Note that h is continuous on $[0, x]$ and differentiable on $(0, x)$. By mean value theorem, there exists $\xi \in (0, x)$ such that

$$
\frac{f(x) - f(0)}{x - 0} = f'(\xi) \le M < 1
$$

Then

$$
f(x) < x + f(0)
$$

By our assumption,

$$
x < f(x) < x + f(0)
$$
\n
$$
1 < \frac{f(x)}{x} < 1 + \frac{f(0)}{x}
$$

Note that $\lim_{x \to \infty} 1 + \frac{f(0)}{x}$ $\frac{y}{x} = \lim_{x \to \infty} 1 = 1.$

By squeeze theorem,

$$
\lim_{x \to \infty} \frac{f(x)}{x} = 1
$$

Therefore,

$$
\lim_{x \to \infty} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to \infty} \left(\frac{f(x)}{x} - \frac{f(0)}{x} \right) = 1
$$

Earlier we showed that

$$
\frac{f(x) - f(0)}{x - 0} \le M < 1
$$

Letting $x \to \infty$,

$$
1 = \lim_{x \to \infty} \frac{f(x) - f(0)}{x - 0} \le M < 1
$$

which leads to contradiction.

Case 3

By using similar argument in case 2, we can show that it is not possible.

All the cases are not possible. Therefore, $f(x) = x$ for some $x \in \mathbb{R}$.

Exercise 3(2):

Suppose not, there were more than one z that satisfies $f(x) = x$.

Let z_1, z_2 , where $z_1 \neq z_2$, be solutions to $f(x) = x$. That is,

$$
f(z_1) = z_1, \quad z_2 = f(z_2)
$$

Since f is continuous inclusively between z_1 and z_2 , and is differentiable exclusively between z_1 and z_2 , by mean value theorem, there exists ξ between z_1 and z_2 such that

$$
\frac{f(z_1) - f(z_2)}{z_1 - z_2} = f'(\xi) \le M < 1
$$

However,

$$
\frac{f(z_1) - f(z_2)}{z_1 - z_2} = \frac{z_1 - z_2}{z_1 - z_2} = 1
$$

which leads to contradiction.

Therefore, there is at most one solution.

Exercise 3(3):

Case 1

Suppose $x_k = z$ for some $k \in \mathbb{N}$. Observe that

$$
x_{k+1} = f(x_k) = f(z) = z
$$

Then we can show, inductively, that $x_n = z$ for all $n \geq k$.

Therefore, $\lim_{n \to \infty} x_n = z$.

Case 2

Suppose $x_k \neq z$ for all $k \in \mathbb{N}$. Let $m = 1, 2, 3, ..., n - 1$. Note that f is continuous inclusively between z and x_m . Also, f is differentiable exclusively between z and x_{m} . By (Lagrange) mean value theorem, there exists ξ_m exclusively between z and x_m such that

$$
\frac{f(x_m) - f(z)}{x_m - z} = f'(\xi_m)
$$

Hence, by our assumption,

$$
\left|\frac{f(x_m)-f(z)}{x_m-z}\right|=\left|f'(\xi_m)\right|\leq M
$$

Then

$$
\begin{aligned}\n\left| x_{n} - z \right| &= \left| f(x_{n-1}) - f(z) \right| \\
&= \left| \frac{f(x_{n-1}) - f(z)}{x_{n-1} - z} \left(x_{n-1} - z \right) \right| \\
&= \left| \frac{f(x_{n-1}) - f(z)}{x_{n-1} - z} \right| \left| x_{n-1} - z \right| \\
&\le M \left| x_{n-1} - z \right| \\
&\le M^{2} \left| x_{n-2} - z \right| \\
&\le M^{n-1} \left| x_{1} - z \right|\n\end{aligned}
$$

Since $M < 1$, $\lim_{n \to \infty} M^{n-1} |x_1 - z| = 0$. By squeeze theorem, $\lim_{n \to \infty} x_n - z = 0$. Therefore, $\lim_{n \to \infty} x_n = z$.