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You can apply mean value theorem or other results covered in MATH1010.
Those questions with ∗ may be challenging.

Exercise 1:

Show the following results.

(a) For x ∈ [ 0, 1),
log(1− x) ≤ −x

(b) For x ∈
[

0,
1

2

]
,

−x− x2 ≤ log(1− x)

(c) Let c ∈ [ 0, 1]. For x ∈ [0, 1],
(1− c)x ≤ 1− cx

Remark: For x ∈
[

0,
1

2

]
, by (a) and (b), we have

−x− x2 ≤ log(1− x) ≤ −x

Exercise 2:

Let f : R→ R be a differentiable function. Suppose f ′ is strictly increasing.

Show that

(a) For any x ∈ R,
f ′(x) < f(x+ 1)− f(x) < f ′(x+ 1)

(b) For any n ∈ N \ {1},

f ′(1) + f ′(2) + ...+ f ′(n− 1) < f(n)− f(1) < f ′(2) + f ′(3) + ...+ f ′(n)

Exercise 3(***):

Let f : R→ R be a differentiable function.

Let {xn} ⊂ R be a sequence defined by
xn+1 = f(xn)

Suppose there exists M < 1 such that |f ′(x)| ≤M for any x ∈ R. Show that

(1) (**) There exists z ∈ R such that f(z) = z;

(2) There is only one z ∈ R that satisfies the equation f(x) = x;

(3) (*) lim
n→∞

xn = z.

Remark: You may just attempt (3) by assuming (1), (2).
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Appendix

In exercise 3, you are asked to show that the sequence {xn} converges to the fixed point z.

One application of this result is to find the roots of functions. For instance, consider the polynomial
equation

x5 − x− 2 = 0

There is no general formula to solve a polynomial equation with degree 5 or above on R. However, we
may approximate the solution by an iterative method.

Let
g(x) = x5 − x− 2

We first estimate the interval for which the root of g(x) = 0 lies in:
Observe that

g(1) = −2, g(2) = 28

By intermediate value theorem, there is a root z lying in the interval (1, 2).

In order to approximate the root z with certain accuracy, we may define an iterative scheme. Before
introducing an iterative scheme, we may observe the following:

We can rewrite g(x) = x5 − x− 2 = 0 as

x = (x+ 2)
1
5 or x = x5 − 2

Question

(a) Let f(x) = (x+ 2)
1
5 . Find f ′(x).

(b) Let f(x) = x5 − 2. Find f ′(x).

After calculation, you may notice that for x ∈ (1, 2),

(a) |f ′(x)| ≤ 1

5
(b) |f ′(x)| ≥ 5
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By exercise 3, if we choose the definition of f in (a), the sequence

xn+1 = f(xn)

will converges to z that satisfies x = f(x). That is,

z = f(z) = (z + 2)
1
5

Recall that z is the root of g. In other words, the sequence {xn} converges to the root of g.

Hence we come up with an iterative scheme:

x1 ∈ (1, 2), xn+1 = f(xn) = (xn + 2)
1
5

which will converge to an approximate solution to g(x) = x5 − x− 2 = 0.

Here is an example

Choose x1 = 1.5. Then
x2 = f(x1) ≈ 1.2847351571
x3 = f(x2) ≈ 1.2685280409
x4 = f(x3) ≈ 1.2672737615

...
x1000 = f(x999) ≈ 1.2671683045

By computation,
g(x1000) ≈ −4.44089× 10−16

Therefore, we have a well-approximated solution.

If we take f in (b) as our definition, we have the following observation.

x1 ∈ (1, 2), xn+1 = f(xn) = x5n − 2

Choose x1 = 1.5. Then
x2 = f(x1) = 5.59375

x3 = f(x2) ≈ 5.475× 103

x4 = f(x3) ≈ 4.918× 1018

x5 = f(x4) ≈ 2.877× 1093

...

Indeed, f is strictly increasing for x ∈ [1,∞) by our computation on its derivative, and the sequence does
not converge to our solution. Therefore, if we take this definition, the iterative scheme fails.

Remark: f must be a well-defined function on R so that the iterative scheme works.
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Solution

Exercise 1:

(a) Observe that when x = 0, the inequality holds.

Let f(u) = log(1− u). Let x ∈ (0, 1).

Observe that f is continuous on [0, x] and differentiable on (0, x), with

f ′(u) = − 1

1− u
≤ −1 for any u ∈ (0, 1)

By (Lagrange) Mean Value Theorem, there exists ξ ∈ (0, x) such that

log(1− x)

x
=
f(x)− f(0)

x− 0
= f ′(ξ) ≤ −1

Therefore,
log(1− x) ≤ −x

(b) Observe that when x = 0, the inequality holds.

Let f(u) = log(1− u) + u2. Let x ∈
(

0,
1

2

]
.

Observe that f is continuous on [0, x] and differentiable on (0, x), with

f ′(u) = − 1

1− u
+ 2u for any u ∈

(
0,

1

2

)
Observe that 2(1− u) ≥ 1. Then 2u ≥ u

1− u
= −1 +

1

1− u
. Hence f ′(u) ≥ −1.

By (Lagrange) Mean Value Theorem, there exists ξ ∈ (0, x) such that

log(1− x) + x2

x
=
f(x)− f(0)

x− 0
= f ′(ξ) ≥ −1

Therefore,
log(1− x) ≥ −x− x2

(c) Let c ∈ [0, 1], x ∈ [0, 1].

Observe that when (c, x) = (0, 0), (0, 1), (1, 0) or (1, 1), the inequality holds.

We exclude the above cases and further let c ∈ (0, 1), x ∈ (0, 1).

Originally, we want to show
(1− c)x ≤ 1− cx

Interchanging c and x, we have
(1− x)c ≤ 1− cx

Let f(u) = (1− u)c.

Observe that f is continuous on [0, x] and differentiable on (0, x), with

f ′(u) = −c(1− u)c−1 for any u ∈ (0, 1)

Observe that f ′(u) = −c 1

(1− u)1−c
≤ −c (Verify it).

By (Lagrange) Mean Value Theorem, there exists ξ ∈ (0, x) such that

(1− x)c − 1

x
=
f(x)− f(0)

x− 0
= f ′(ξ) ≤ −c
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Therefore,
(1− x)c ≤ 1− cx

Interchanging x and c again, we get
(1− c)x ≤ 1− cx

Exercise 2:

(a) Note that f is continuous on [x, x+ 1] and differentiable on (x, x+ 1).
By (Lagrange) Mean Value Theorem, there exists ξ ∈ (x, x+ 1) such that

f(x+ 1)− f(x) =
f(x+ 1)− f(x)

(x+ 1)− x
= f ′(ξ)

Since f ′ is strictly increasing,
f ′(x) < f ′(ξ) < f ′(x+ 1)

Therefore,
f ′(x) < f(x+ 1)− f(x) < f ′(x+ 1)

(b) For n ∈ N \ {1},

f(n)− f(1) =
(
f(n)− f(n− 1)

)
+
(
f(n− 1)− f(n− 2)

)
+ ...+

(
f(3)− f(2)

)
+
(
f(2)− f(1)

)
=

n−1∑
m=1

(
f(m+ 1)− f(m)

)
By (a), for m = 1, 2, ..., n− 1,

f ′(m) < f(m+ 1)− f(m) < f ′(m+ 1)

Summing all the terms,

n−1∑
m=1

f ′(m) <

n−1∑
m=1

(
f(m+ 1)− f(m)

)
<

n−1∑
m=1

f ′(m+ 1)

Therefore,

f ′(1) + f ′(2) + ...+ f ′(n− 1) < f(n)− f(1) < f ′(2) + f ′(3) + ...+ f ′(n)
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Exercise 3(1):

Let h(x) = f(x)− x. Suppose not, f(x) 6= x for any x ∈ R.

There are three cases.

1 There exists x, y ∈ R such that f(x)− x < 0 and f(y)− y > 0.

2 f(x)− x > 0 for all x ∈ R.

3 f(x)− x < 0 for all x ∈ R.

Case 1
Observe that h(x) < 0 and h(y) > 0. f is differentiable, and hence continuous.
Therefore h is continuous. By intermediate value theorem, there exists z between x and y such that

h(z) = 0

Then f(z) = z, which leads to contradiction.

Case 2
We have f(0) > 0.
Since f is differentiable on R, h is differentiable on R.
Let x > 0. Note that h is continuous on [0, x] and differentiable on (0, x).
By mean value theorem, there exists ξ ∈ (0, x) such that

f(x)− f(0)

x− 0
= f ′(ξ) ≤M < 1

Then
f(x) < x+ f(0)

By our assumption,
x < f(x) < x+ f(0)

1 <
f(x)

x
< 1 +

f(0)

x

Note that lim
x→∞

1 +
f(0)

x
= lim

x→∞
1 = 1.

By squeeze theorem,

lim
x→∞

f(x)

x
= 1

Therefore,

lim
x→∞

f(x)− f(0)

x− 0
= lim

x→∞

(
f(x)

x
− f(0)

x

)
= 1

Earlier we showed that
f(x)− f(0)

x− 0
≤M < 1

Letting x→∞,

1 = lim
x→∞

f(x)− f(0)

x− 0
≤M < 1

which leads to contradiction.

Case 3
By using similar argument in case 2, we can show that it is not possible.

All the cases are not possible. Therefore, f(x) = x for some x ∈ R.
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Exercise 3(2):

Suppose not, there were more than one z that satisfies f(x) = x.

Let z1, z2, where z1 6= z2, be solutions to f(x) = x. That is,

f(z1) = z1, z2 = f(z2)

Since f is continuous inclusively between z1 and z2, and is differentiable exclusively between z1 and z2,
by mean value theorem, there exists ξ between z1 and z2 such that

f(z1)− f(z2)

z1 − z2
= f ′(ξ) ≤M < 1

However,
f(z1)− f(z2)

z1 − z2
=
z1 − z2
z1 − z2

= 1

which leads to contradiction.
Therefore, there is at most one solution.
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Exercise 3(3):

Case 1
Suppose xk = z for some k ∈ N.
Observe that

xk+1 = f(xk) = f(z) = z

Then we can show, inductively, that xn = z for all n ≥ k.

Therefore, lim
n→∞

xn = z.

Case 2
Suppose xk 6= z for all k ∈ N.
Let m = 1, 2, 3, ..., n− 1.
Note that f is continuous inclusively between z and xm.
Also, f is differentiable exclusively between z and xm .
By (Lagrange) mean value theorem, there exists ξm exclusively between z and xm such that

f(xm)− f(z)

xm − z
= f ′(ξm)

Hence, by our assumption, ∣∣∣∣∣f(xm)− f(z)

xm − z

∣∣∣∣∣ =
∣∣∣f ′(ξm)

∣∣∣ ≤M
Then ∣∣∣xn − z∣∣∣ =

∣∣∣f(xn−1)− f(z)
∣∣∣

=

∣∣∣∣∣f(xn−1)− f(z)

xn−1 − z
(xn−1 − z)

∣∣∣∣∣
=

∣∣∣∣∣f(xn−1)− f(z)

xn−1 − z

∣∣∣∣∣ ∣∣∣xn−1 − z∣∣∣
≤M

∣∣∣xn−1 − z∣∣∣
≤M2

∣∣∣xn−2 − z∣∣∣
≤Mn−1

∣∣∣x1 − z∣∣∣
Since M < 1, lim

n→∞
Mn−1

∣∣∣x1 − z∣∣∣ = 0.

By squeeze theorem, lim
n→∞

xn − z = 0.

Therefore, lim
n→∞

xn = z.


