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1. Differentiable Function

1. Definition

Let f : X → R be a function. The function f is said to be differentiable at x ∈ X if

lim
h→0

f(x+ h)− f(x)

h
exists.

We denote this limit as f ′(x).

We say f(x) is differentiable on (a, b) if f is differentiable at all points in (a, b).

Remark: f ′(x) is the slope of the tangent line on the graph of f at x.

2. Theorem

1. Differentiability and Continuity

Let f : X → R be a function.

If f(x) is differentiable at x ∈ X, then f(x) is continuous at x.

2. Leinbiz’s Rule

We denote f (n)(x) =
dn

dxn
f(x).

Let f, g : X → R be functions. Then

(fg)(n)(x) =

n∑
k=0

Cn
k f

(n−k)(x)g(k)(x)

2. Increasing (Decreasing) Function

1. Definition

Let f : X → R be a function.
The function f is said to be monotonically increasing (decreasing) if
for any x, y ∈ X, if x < y, then f(x) ≤ f(y) ( f(x) ≥ f(y) ).

The function f is said to be strictly increasing (decreasing) if
for any x, y ∈ X, if x < y, then f(x) < f(y) ( f(x) > f(y) ).

2. Corollary

Let f : X → R be a differentiable function.

1. If f ′(x) > 0 for any x ∈ X, then f is strictly increasing.

2. f ′(x) ≥ 0 for any x ∈ X if and only if f is monotonically increasing.
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Exercise 1:

Find
dy

dx
by using first principle.

(a) y = sin 3x (b) y =
1

lnx

Exercise 2:

Find
dy

dx
without using first principle.

(a) y = ex sinx (b) y =
e3x

1 + x

(c) y = ln(tan−1 x) (d) y = (sinx)x

(e) xy2 + cos(x+ y) = 1

Exercise 3:

Define f : R→ R by

f(x) =

x2 tan−1
1

x
x 6= 0

0 x = 0

(a) Find f ′(x) for x 6= 0.

(b) Determine whether f is differentiable at x = 0.

(c) Determine whether f ′ is continuous at x = 0.

Exercise 4:

Let y = ex
2

. Show that

(a) y′ = 2xy

(b) y(n+1)(x) = 2xy(n)(x) + 2ny(n−1)(x)

Exercise 5:

(a) Let f : (1,∞)→ (0,∞) be the function defined by

f(x) =
x

lnx

Show that for all x > 1, f(x) ≥ e.

(b) Let b > 1. Let g : (1,∞)→ (0,∞) be the function defined by

g(x) =
xb

bx

Show that

(i) g is strictly increasing on

(
1,

b

ln b

)
and strictly decreasing on

(
b

ln b
,∞
)

;

(ii) If 1 < a < b < e, then ab < ba.
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Solution

Exercise 1:

(a) Please verify it yourself.

(b)

lim
h→0

1

ln(x+ h)
− 1

lnx

h
= lim

h→0

1

h

lnx− ln(x+ h)

lnx ln(x+ h)

= lim
h→0

1

h

(
ln

x

x+ h

)
lnx ln(x+ h)

=
1

x
lim
h→0

−x
h

ln

(
1 +

h

x

)
lnx ln(x+ h)

=
1

x
lim
h→0

−x
h

ln

(
1 +

1
x
h

)
lnx ln(x+ h)

=
1

x
lim
h→0

− ln

(
1 +

1
x
h

) x
h

lnx ln(x+ h)

= − 1

x(lnx)2
lim
h→0

ln

(
1 +

1
x
h

) x
h

= − ln e

x(lnx)2

= − 1

x(lnx)2

Exercise 2:

(a)
dy

dx
= ex(sinx+ cosx)

(b)
dy

dx
=

(3x+ 2)e3x

(x+ 1)2

(c)
dy

dx
=

1

(x2 + 1) tan−1 x

(d)
ln y = x ln sinx

1

y

dy

dx
= ln sinx+ x cotx

dy

dx
= (sinx)x(ln sinx+ x cotx)

(e)

y2 + 2xy
dy

dx
− sin(x+ y)(1 +

dy

dx
) = 0
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y2 + 2xy
dy

dx
− sin(x+ y)− sin(x+ y)

dy

dx
= 0

dy

dx
=

sin(x+ y)− y2

2xy − sin(x+ y)

Exercise 3:

(a) f ′(x) = 2x tan−1
1

x
− x2

x2 + 1

(b) One has ∣∣∣∣f(h)− f(0)

h− 0

∣∣∣∣ =

∣∣∣∣f(h)

h

∣∣∣∣ ≤ ∣∣∣∣h tan−1
1

h

∣∣∣∣ ≤ |h| · π2
By squeeze theorem, since

lim
h→0
|h| · π

2
= 0,

we have

lim
h→0

f(h)− f(0)

h− 0
= 0

f is differentiable at x = 0

(c)

f ′(x) =

2x tan−1
1

x
− x2

x2 + 1
x 6= 0

0 x = 0

One has ∣∣∣∣x tan−1
1

x

∣∣∣∣ ≤ |x| · π2
By squeeze theorem, since

lim
x→0
|x| · π

2
= 0,

we have

lim
x→0

2x tan−1
1

x
= 0

Also,

lim
x→0

x2

x2 + 1
= 0

Hence,
lim
x→0

f ′(x) = 0 = f ′(0)

Therefore, f ′ is continuous at x = 0.

Exercise 4:

(a) Please verify it yourself.

(b)
y(n+1) = (2xy)(n) = 2Cn

0 x
(0)y(n) + 2Cn

1 x
(1)y(n−1) = 2xy(n) + 2ny(n−1)

Exercise 5:

(a) One has

f ′(x) =
lnx− 1

(lnx)2

If x ≥ e, then f ′(x) ≥ 0. Hence f(x) ≥ f(e) = e;
If 1 < x < e, then f ′(x) ≤ 0. Hence f(x) ≥ f(e) = e.
Hence, for x > 1, f(x) ≥ e.
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(b)(i) One has
ln g(x) = b lnx− x ln b

Differentiating both sides,
1

g(x)
g′(x) =

b

x
− ln b

g′(x) =
g(x) ln b

x

(
b

ln b
− x

)
Observe that g(x) > 0 for all x > 1, and ln b > 0.

If 1 < x <
b

ln b
, we have g′(x) > 0 (verify it). Hence g is strictly increasing on

(
1,

b

ln b

)
;

If x >
b

ln b
, we have g′(x) < 0 (verify it). Hence g is strictly decreasing on

(
b

ln b
,∞
)

.

(b)(ii) Let 1 < a < b < e. One has

g(a) =
ab

ba
, g(b) = 1.

Also, since 0 < ln b < 1, we have 1 < b <
b

ln b
.

Since a < b and g is strictly increasing on

(
1,

b

ln b

)
, we have

g(a) < g(b)

Hence,
ab < ba


