THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH1010 University Mathematics (Spring 2018) Tutorial 4 CHAK Wai Ho

1. Differentiable Function

1. Definition

Let $f: X \to \mathbb{R}$ be a function. The function f is said to be differentiable at $x \in X$ if

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
 exists.

We denote this limit as f'(x).

We say f(x) is differentiable on (a, b) if f is differentiable at all points in (a, b).

Remark: f'(x) is the slope of the tangent line on the graph of f at x.

2. Theorem

1. Differentiability and Continuity

Let $f: X \to \mathbb{R}$ be a function. If f(x) is differentiable at $x \in X$, then f(x) is continuous at x.

2. Leinbiz's Rule

We denote $f^{(n)}(x) = \frac{d^n}{dx^n}f(x)$.

Let $f, g: X \to \mathbb{R}$ be functions. Then

$$(fg)^{(n)}(x) = \sum_{k=0}^{n} C_k^n f^{(n-k)}(x) g^{(k)}(x)$$

2. Increasing (Decreasing) Function

1. Definition

Let $f: X \to \mathbb{R}$ be a function.

The function f is said to be monotonically increasing (decreasing) if for any $x, y \in X$, if x < y, then $f(x) \le f(y)$ ($f(x) \ge f(y)$).

The function f is said to be strictly increasing (decreasing) if for any $x, y \in X$, if x < y, then f(x) < f(y) (f(x) > f(y)).

2. Corollary

Let $f: X \to \mathbb{R}$ be a differentiable function.

- 1. If f'(x) > 0 for any $x \in X$, then f is strictly increasing.
- 2. $f'(x) \ge 0$ for any $x \in X$ if and only if f is monotonically increasing.

Exercise 1: Find $\frac{dy}{dx}$ by using first principle. (a) $y = \sin 3x$

(b)
$$y = \frac{1}{\ln x}$$

Exercise 2: Find $\frac{dy}{dx}$ without using first principle. (a) $y = e^x \sin x$ (b) $y = \frac{e^{3x}}{1+x}$ (c) $y = \ln(\tan^{-1}x)$ (d) $y = (\sin x)^x$ (e) $xy^2 + \cos(x+y) = 1$

Exercise 3:

Define $f : \mathbb{R} \to \mathbb{R}$ by

$$f(x) = \begin{cases} x^2 \tan^{-1} \frac{1}{x} & x \neq 0\\ 0 & x = 0 \end{cases}$$

- (a) Find f'(x) for $x \neq 0$.
- (b) Determine whether f is differentiable at x = 0.
- (c) Determine whether f' is continuous at x = 0.

Exercise 4:

Let $y = e^{x^2}$. Show that

(a) y' = 2xy(b) $y^{(n+1)}(x) = 2xy^{(n)}(x) + 2ny^{(n-1)}(x)$

Exercise 5:

(a) Let $f: (1,\infty) \to (0,\infty)$ be the function defined by

$$f(x) = \frac{x}{\ln x}$$

Show that for all x > 1, $f(x) \ge e$.

(b) Let b > 1. Let $g: (1, \infty) \to (0, \infty)$ be the function defined by

$$g(x) = \frac{x^b}{b^x}$$

Show that

Solution

Exercise 1:

(a) Please verify it yourself.

(b)

$$\lim_{h \to 0} \frac{\frac{1}{\ln(x+h)} - \frac{1}{\ln x}}{h} = \lim_{h \to 0} \frac{1}{h} \frac{\ln x - \ln(x+h)}{\ln x \ln(x+h)}$$
$$= \lim_{h \to 0} \frac{\frac{1}{h} \left(\ln \frac{x}{x+h} \right)}{\ln x \ln(x+h)}$$
$$= \frac{1}{x} \lim_{h \to 0} \frac{-\frac{x}{h} \ln \left(1 + \frac{h}{x} \right)}{\ln x \ln(x+h)}$$
$$= \frac{1}{x} \lim_{h \to 0} \frac{-\frac{x}{h} \ln \left(1 + \frac{1}{x} \right)}{\ln x \ln(x+h)}$$
$$= \frac{1}{x} \lim_{h \to 0} \frac{-\ln \left(1 + \frac{1}{x} \right)}{\ln x \ln(x+h)}$$
$$= -\frac{1}{x(\ln x)^2} \lim_{h \to 0} \ln \left(1 + \frac{1}{x} \right)^{\frac{x}{h}}$$
$$= -\frac{\ln e}{x(\ln x)^2}$$
$$= -\frac{1}{x(\ln x)^2}$$

Exercise 2:

(a)

$$\frac{dy}{dx} = e^{x}(\sin x + \cos x)$$
(b)

$$\frac{dy}{dx} = \frac{(3x+2)e^{3x}}{(x+1)^{2}}$$
(c)

$$\frac{dy}{dx} = \frac{1}{(x^{2}+1)\tan^{-1}x}$$
(d)

$$\ln y = x\ln\sin x$$

$$\frac{1}{y}\frac{dy}{dx} = \ln\sin x + x\cot x$$

$$\frac{dy}{dx} = (\sin x)^{x}(\ln\sin x + x\cot x)$$
(e)

$$y^{2} + 2xy\frac{dy}{dx} - \sin(x+y)(1+\frac{dy}{dx}) = 0$$

$$y^{2} + 2xy\frac{\mathrm{d}y}{\mathrm{d}x} - \sin(x+y) - \sin(x+y)\frac{\mathrm{d}y}{\mathrm{d}x} = 0$$
$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\sin(x+y) - y^{2}}{2xy - \sin(x+y)}$$

Exercise 3:

(a)
$$f'(x) = 2x \tan^{-1} \frac{1}{x} - \frac{x^2}{x^2 + 1}$$

(b) One has
 $\left| \frac{f(h) - f(0)}{h - 0} \right| = \left| \frac{f(h)}{h} \right| \le \left| h \tan^{-1} \frac{1}{h} \right| \le |h| \cdot \frac{\pi}{2}$
By squeeze theorem, since
 $\lim_{h \to 0} |h| \cdot \frac{\pi}{2} = 0$,
we have
 $\lim_{h \to 0} \frac{f(h) - f(0)}{h - 0} = 0$
 f is differentiable at $x = 0$
(c)
 $f'(x) = \begin{cases} 2x \tan^{-1} \frac{1}{x} - \frac{x^2}{x^2 + 1} & x \neq 0\\ 0 & x = 0 \end{cases}$
One has
 $\left| x \tan^{-1} \frac{1}{x} \right| \le |x| \cdot \frac{\pi}{2}$
By squeeze theorem, since
 $\lim_{x \to 0} |x| \cdot \frac{\pi}{2} = 0$,
we have
 $\lim_{x \to 0} 2x \tan^{-1} \frac{1}{x} = 0$
Also,

$$\lim_{x \to 0} \frac{x^2}{x^2 + 1} = 0$$

Hence,

$$\lim_{x \to 0} f'(x) = 0 = f'(0)$$

Therefore, f' is continuous at x = 0.

Exercise 4:

(a) Please verify it yourself.

(b)

$$y^{(n+1)} = (2xy)^{(n)} = 2C_0^n x^{(0)} y^{(n)} + 2C_1^n x^{(1)} y^{(n-1)} = 2xy^{(n)} + 2ny^{(n-1)}$$

Exercise 5:

(a) One has

$$f'(x) = \frac{\ln x - 1}{(\ln x)^2}$$

If $x \ge e$, then $f'(x) \ge 0$. Hence $f(x) \ge f(e) = e$; If 1 < x < e, then $f'(x) \le 0$. Hence $f(x) \ge f(e) = e$. Hence, for x > 1, $f(x) \ge e$.

(b)(i) One has

$$\ln g(x) = b \ln x - x \ln b$$

Differentiating both sides,

$$\frac{1}{g(x)}g'(x) = \frac{b}{x} - \ln b$$
$$g'(x) = \frac{g(x)\ln b}{x} \left(\frac{b}{\ln b} - x\right)$$

Observe that g(x) > 0 for all x > 1, and $\ln b > 0$.

If $1 < x < \frac{b}{\ln b}$, we have g'(x) > 0 (verify it). Hence g is strictly increasing on $\left(1, \frac{b}{\ln b}\right)$; If $x > \frac{b}{\ln b}$, we have g'(x) < 0 (verify it). Hence g is strictly decreasing on $\left(\frac{b}{\ln b}, \infty\right)$.

(b)(ii) Let 1 < a < b < e. One has

$$g(a) = \frac{a^b}{b^a}, \quad g(b) = 1.$$

Also, since $0 < \ln b < 1$, we have $1 < b < \frac{b}{\ln b}$. Since a < b and g is strictly increasing on $\left(1, \frac{b}{\ln b}\right)$, we have g(a) < g(b)

Hence,

$$a^b < b^a$$