THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH1010 University Mathematics (Spring 2018) Tutorial 2 CHAK Wai Ho

1. Mathematical Induction

The First Principle of Mathematical Induction

Let $P_n = P(n)$ be a proposition, or a statement involving the natural number n. Let $n_0 \in \mathbb{N}$. Given P_{n_0} is true. Suppose for $k \in \mathbb{N}$, $k \ge n_0$, if P_k is true, then P_{k+1} is true. Then P_n is true for all $n \in \mathbb{N}$, $n \ge n_0$.

We may view $\{P_n\}$ as a sequence of propositions: $P_n = 1$ if P_n is true; otherwise $P_n = 0$. From the above principle, one can provide a definition for the sequence $\{P_n\}$ as

 $P_{n_0} = 1, \quad P_{n+1} = P_n \quad \text{for} \quad n \ge n_0$

This shows that $P_n = 1$ for all $n \in \mathbb{N}$, $n \ge n_0$.

The Second Principle of Mathematical Induction (Optional)

Let $P_n = P(n)$ be a proposition, or a statement involving the natural number n. Let $n_0 \in \mathbb{N}$. Given P_{n_0}, P_{n_0+1} are true. Suppose for $k \in \mathbb{N}$, $k \ge n_0$, if P_k, P_{k+1} are true, then P_{k+2} is true. Then P_n is true for all $n \in \mathbb{N}, n \ge n_0$.

Can you figure out a definition for the sequence $\{P_n\}$?

2. Function

In the last tutorial, you should know that a sequence is an example of functions. This tutorial mainly focuses on the definitions of some real-valued functions.

Definition

(a) Domain and image of a function

Let $f: D \subset \mathbb{R} \to \mathbb{R}$ be a function. Define $f(D) = \{f(x) : x \in D\}$. The set D is the domain of f, and the set f(D) is the image of f.

(b) Injective Function

Let $f: D \to \mathbb{R}$ be a function. The function f is said to be injective (one-to-one) if for any $x_1, x_2 \in D$, if $f(x_1) = f(x_2)$, then $x_1 = x_2$.

(c) Surjective Function

Let $f: D \to \mathbb{R}$ be a function. The function f is said to be surjective (onto) if for any $y \in \mathbb{R}$, there exists $x \in D$ such that f(x) = y.

(d) **Bijective Function**

A function is said to be bijective if it is both injective and surjective.

(e) Even Function

Let $f: D \to \mathbb{R}$ be a function. The function f is said to be even if for any $x \in D$, f(-x) = f(x).

(f) Odd Function

Let $f: D \to \mathbb{R}$ be a function. The function f is said to be odd if for any $x \in D$, f(-x) = -f(x). Exercise 1 (For students who are not familiar with mathematical induction or trigonometry):

- (1) Prove the following for all $n \in \mathbb{N}$ by induction.
 - (a) $1+3+6+\ldots+\frac{n(n+1)}{2}=\frac{n(n+1)(n+2)}{3!}$ (b) $1^3+2^3+3^3+\ldots+(2n)^3=n^2(2n+1)^2$
 - (c) $\sin\theta + \sin 3\theta + \dots + \sin(2n-1)\theta = \frac{\sin^2 n\theta}{\sin \theta}$, where θ is not a multiple of 2π
- (2) Let $\{a_n\}$ be the sequence defined by

$$a_0 = \sqrt{2}, \qquad a_n = \sqrt{2 + a_{n-1}}$$

Show, by induction, that $a_n = 2 \cos \frac{\pi}{2^{n+2}}$ for all non-negative integer n.

Exercise 2:

Let f be a function. Find the domain and image of the function f.

(a)
$$f(x) = \frac{1}{\sqrt{x^2 - 9}}$$
 (b) $f(x) = \frac{1}{\sin x + \cos x}$

Exercise 3:

Let f be a function. Determine whether the function f is even or odd.

(a)
$$f : \mathbb{R} \setminus \{0\} \to \mathbb{R}; \quad f(x) = \frac{1}{x^2}$$

(b) $f : \mathbb{R} \to \mathbb{R}; \quad f(x) = \frac{\exp(x) - \exp(-x)}{2}$

Exercise 4:

Let f be a function. Determine whether the function f is injective, surjective and bijective.

(a) $f : \mathbb{R} \setminus \{0\} \to \mathbb{R} \setminus \{0\}; \quad f(x) = \frac{1}{x}$ (b) $f : \mathbb{R} \setminus \{0\} \to \mathbb{R}; \quad f(x) = \frac{1}{x}$ (c) $f : \mathbb{R} \setminus \{0\} \to \mathbb{R} \setminus \{0\}; \quad f(x) = \frac{1}{|x|}$ (d) $f : \mathbb{R} \setminus \{0\} \to \mathbb{R}^+; \quad f(x) = \frac{1}{|x|}$ (e) $f : \mathbb{R} \setminus \{2\} \to \mathbb{R}; \quad f(x) = \frac{3x+2}{x-2}$

Exercise 5:

Let f be a function. Sketch the graph of the function f.

- (a) f(x) = |x 2| + 1
- (b) f(x) = ||x 3| 6|

Solution

Exercise 1:

- (1) (a) Please verify it yourself.
 - (b) Let P(n) be the proposition that $1^3 + 2^3 + 3^3 + \dots + (2n)^3 = n^2(2n+1)^2$. Since $1^3 + 2^3 = 1^2(2+1)^2$, P(1) is true. Suppose P(k) is true for some $k \in \mathbb{N}$. i.e. $1^3 + 2^3 + 3^3 + \dots + (2k)^3 = k^2(2k+1)^2$. Then $1^3 + 2^3 + 3^3 + \dots + (2k)^3 + (2k+1)^3 + (2(k+1))^3$ $= k^2(2k+1)^2 + (2k+1)^3 + (2(k+1))^3$ $= (k^2 + 2k + 1)(2k+1)^2 + (2(k+1))^3$ $= (k+1)^2(2k+1)^2 + 8(k+1)^3$ $= (k+1)^2(4k^2 + 12k + 9)$ $= (k+1)^2(2(k+1)+1)^2$

Hence, P(k+1) is true. By the first principle of mathematical induction, P(n) is true for any $n \in \mathbb{N}$.

- (c) Hint: Apply the following identities:
 - (i) $2\sin x \sin y = \cos(x-y) \cos(x+y)$ (ii) $\cos 2x = 1 - 2\sin^2 x$
- (2) Hint: $\cos 2x = 2\cos^2 x 1$

Exercise 2:

- (a) Let D(f), R(f) be the domain and image of f respectively. Note that $\sqrt{x^2 - 9} > 0 \iff x > 3$ or x < -3. Hence $D(f) = \left\{ x \in \mathbb{R} \mid \sqrt{x^2 - 9} > 0 \right\} = (-\infty, -3) \cup (3, +\infty)$. Also, $R(f) = (0, +\infty)$.
- (b) Let D(f), R(f) be the domain and image of f respectively. One has

Sin
$$x + \cos x = \sqrt{2} \sin \left(x + \frac{\pi}{4}\right)$$

Note that $\sin x + \cos x \neq 0 \iff \sin \left(x + \frac{\pi}{4}\right) \neq 0 \iff x + \frac{\pi}{4} \neq n\pi$, where $n \in \mathbb{Z}$.
Hence $D(f) = \left\{x \in \mathbb{R} \mid \sin x + \cos x \neq 0\right\} = \left\{x \in \mathbb{R} \mid x \neq \frac{4n - 1}{4}\pi, n \in \mathbb{Z}\right\}$.
Also, $R(f) = \left(-\infty, -\frac{1}{\sqrt{2}}\right] \cup \left[\frac{1}{\sqrt{2}}, +\infty\right)$.

Exercise 3:

(a) Even. Please verify it yourself.

(b)
$$f(-x) = \frac{\exp(-x) - \exp(x)}{2} = -f(x)$$
. So f is odd.
Remark: $f(x) = \sinh(x)$

Exercise 4:

Note that

 $\mathbb{R} \setminus \{0\}$ is the set of all real numbers except 0; \mathbb{R}^+ is the set of all positive real numbers.

question	injective	surjective	bijective
4a	\checkmark	\checkmark	\checkmark
4b	\checkmark	×	×
4c	×	×	×
4d	×		×

(a-c) Please verify it yourself.

(d) Take x = 1, y = -1. Note that $x \neq y$ and f(x) = f(y) = 1. Hence f is not injective.

Let $y \in \mathbb{R}^+$. Take $x = \frac{1}{y}$. Note that $x \in \mathbb{R} \setminus \{0\}$ and f(x) = y. Hence f is surjective.

Therefore, f is not bijective.

(e) Let
$$f(x) = f(y)$$
. Then $\frac{3x+2}{x-2} = \frac{3y+2}{y-2}$. One has
 $(3x+2)(y-2) = (3y+2)(x-2)$
 $3xy+2y-6x-4 = 3xy+2x-6y-4$
 $8x = 8y$
 $x = y$

Hence f is injective.

Let y = 3. There is no such x that satisfies f(x) = y. For otherwise, contradiction arises:

$$3 = \frac{3x+2}{x-2}$$
$$3x-6 = 3x+2$$
$$0 = 8$$

Hence f is not surjective.

Therefore, f is not bijective.

Exercise 5:

(a) Let
$$g(x) = |x - 2|$$
, $h(x) = 1$. We have $f(x) = g(x) + h(x)$.

$$g(x) = \begin{cases} x - 2 & x \ge 2\\ 2 - x & x > 2 \end{cases}$$

$$f(x) = \begin{cases} x - 1 & x \ge 2\\ 3 - x & x > 2 \end{cases}$$

(b) Let g(x) = |x - 3|, h(x) = -6. We have f(x) = |g(x) + h(x)|.

$$g(x) = \begin{cases} x - 3 & x \ge 3\\ 3 - x & x < 3 \end{cases}$$

$$g(x) + h(x) = \begin{cases} x - 9 & x \ge 3\\ -3 - x & x < 3 \end{cases}$$

$$f(x) = \begin{cases} x - 9 & x \ge 9\\ 9 - x & 3 \le x < 9\\ 3 + x & -3 \le x < 3\\ -3 - x & x < -3 \end{cases}$$

$$graph of f(x) \text{ for Ex 5b}$$

$$y = |x - 3| - 6|$$

12