
THE CHINESE UNIVERSITY OF HONG KONG
Department of Mathematics

MATH1010 University Mathematics (Spring 2018)
Tutorial 1

CHAK Wai Ho

1. Trigonometry

Here are some useful trigonometric identities:

(a) sin(x± y) = sinx cos y ± cosx sin y

(b) cos(x± y) = cosx cos y ∓ sinx sin y

(c) tan(x± y) =
tanx± tan y

1∓ tanx tan y

The product-to-sum and the sum-to-product formulae can be derived from the above identities.

(a) 2 sinx cos y = sin(x− y) + sin(x+ y)

(b) 2 cosx cos y = cos(x− y) + cos(x+ y)

(c) 2 sinx sin y = cos(x− y)− cos(x+ y)

(d) sinx± cos y = 2 sin

(
x± y

2

)
cos

(
x∓ y

2

)
(e) cosx+ cos y = 2 cos

(
x− y

2

)
cos

(
x+ y

2

)
(f) cosx− cos y = −2 sin

(
x− y

2

)
sin

(
x+ y

2

)
2. The Limit of a Sequence

Definition

(a) Sequence
A sequence is a function whose domain is N or a subset of N.

(b) Bounded Sequence
Let {an} be a sequence.
The sequence {an} is said to be bounded if there exists M ∈ R such that |an| < M for all n ∈ N.

(c) Monotonic Sequence
Let {an} be a sequence.
The sequence {an} is said to be monotonically increasing (decreasing) if
for any m < n, we have am ≤ an (am ≥ an).
The sequence {an} is monotonic if
it is either monotonically increasing or monotonically decreasing.

Theorem

(a) Monotone Convergence Theorem
Let {an} be a sequence. If the sequence {an} is bounded and monotonic, then lim

n→∞
an exists.

(b) Squeeze Theorem
Let {an}, {bn}, {cn} be sequences such that an ≤ bn ≤ cn.
If there exists L ∈ R such that lim

n→∞
an = lim

n→∞
cn = L,

then {bn} is convergent and lim
n→∞

bn = L.
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Exercise 1:

Show the following identities.

(a) cos 3x = 4 cos3 x− 3 cosx (b) tan 3x =
3 tanx− tan3 x

1− 3 tan2 x

Exercise 2:

Let {an} be a sequence. Find lim
n→∞

an if it exists.

(a) an =
7n+ 3

3n2 + 6n− 4
(b) an =

√
9n2 + 7

2n+ 3

(c) an = cos

(
nπ

2

)
(d) an =

sinn

n

(e) a1 = 0, an =

n∏
i=2

(
1− 1

i2

)
for n ≥ 2

Exercise 3:

Let {an} be the sequence defined as follows:

a1 = 0, an+1 =
2

3
an + 1

(a) Determine whether the sequence {an} is bounded.

(b) Determine whether the sequence {an} is monotonic.

(c) Find the limit of the sequence {an} if it exists.

Exercise 4:

(a) Let k, n ∈ N. For 1 ≤ k ≤ n, show that (n+ 1− k) k ≥ n. Hence, show that
(
n!
)2 ≥ nn.

(b) State whether lim
n→∞

(
n!
)− 1

n exists.

If yes, find the limit. If not, explain why it does not exist.
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Solution

You should notice that full solutions may not be provided.

The exercises without full solutions are discussed in the tutorial classes on Thursday.

Exercise 1:

(a) Please verify it yourself.

(b) One has

tan 3x =
tan 2x+ tanx

1− tan 2x tanx
=

2 tanx

1− tan2 x
+ tanx

1− 2 tanx

1− tan2 x
tanx

=
3 tanx− tan3 x

1− 3 tan2 x

Exercise 2:

(a) Answer: 0.

Please verify it yourself.

(b) One has

an =

1

n

√
9n2 + 7

1

n
(2n+ 3)

=

√
9 +

7

n2

2 +
3

n

Hence, lim
n→∞

an =
3

2
.

(c)

{
cos

(
nπ

2

)}
is an alternating sequence with four repeating terms: 0,−1, 0, 1.

The limit does not exist.

(d) One has 0 ≤ sinn

n
≤ 1

n
and lim

n→∞

1

n
= 0. By squeeze theorem, lim

n→∞

sinn

n
= 0.

(e) For n ≥ 2, one has

an =

(
1− 1

22

)(
1− 1

32

)
· · ·
(

1− 1

n2

)
=

(
1− 1

2

)Z
Z
Z
ZZ

(
1 +

1

2

)Z
Z
Z
ZZ

(
1− 1

3

)Z
Z

Z
ZZ

(
1 +

1

3

)
· · ·

H
HHHH

(
1− 1

n

)(
1 +

1

n

)
=

1

2
· n+ 1

n
=

1

2
·
(

1 +
1

n

)

Hence, lim
n→∞

an =
1

2
.
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Exercise 3:

(a) Let P (n) be the proposition that 0 ≤ an ≤ 3.
Since 0 ≤ a1 = 0 ≤ 3, P (1) is true.
Suppose P (k) is true for some k ∈ N. i.e. 0 ≤ ak ≤ 3.

Then 0 ≤ 1 ≤ ak+1 =
2

3
ak + 1 ≤ 2

3
· 3 + 1 = 3. Hence, P (k + 1) is true.

By the first principle of mathematical induction, P (n) is true for any n ∈ N.
Therefore, 0 ≤ an ≤ 3.
In particular, |an| ≤ 3 and hence {an} is bounded.

(b) One has an+1 − an =
2

3
an + 1− an = 1− 1

3
an ≥ 1− 1

3
· 3
(

by (a)

)
= 0.

Therefore, an+1 ≥ an and hence {an} is monotonic.

(c) By monotone convergence theorem, since {an} is bounded and monotonic, lim
n→∞

an exists.

Let a = lim
n→∞

an. One has a =
2

3
a+ 1 and hence a = lim

n→∞
an = 3.

Remark: an is a sum of the first n terms of a geometric sequence.

Exercise 4:

(a) Observe that for any a, b ∈ N, ab+ 1 ≥ a+ b (verify it).
Put a = n+ 1− k, b = k. Then (n+ 1− k) k ≥ (n+ 1− k) + k − 1 = n.

(
n!
)2

=

(
n · (n− 1) · · · 2 · 1

)(
n · (n− 1) · · · 2 · 1

)
=

(
n · 1

)(
(n− 1) · 2

)
· · ·
(

2 · (n− 1)

)(
1 · n

)
≥ n · n · · ·n︸ ︷︷ ︸

n times

= nn

(b) By (a), one has 0 ≤
(
n!
)− 1

n ≤ n− 1
2 and lim

n→∞
n−

1
2 = 0.

By Squeeze theorem, lim
n→∞

(
n!
)− 1

n = 0.


