THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH1010 University Mathematics (Spring 2018) Tutorial 1 CHAK Wai Ho

1. Trigonometry

Here are some useful trigonometric identities:

(a)
$$\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y$$

- (b) $\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y$
- (c) $\tan(x \pm y) = \frac{\tan x \pm \tan y}{1 \mp \tan x \tan y}$

The product-to-sum and the sum-to-product formulae can be derived from the above identities.

- (a) $2\sin x \cos y = \sin(x-y) + \sin(x+y)$
- (b) $2\cos x \cos y = \cos(x-y) + \cos(x+y)$
- (c) $2\sin x \sin y = \cos(x-y) \cos(x+y)$

(d)
$$\sin x \pm \cos y = 2 \sin \left(\frac{x \pm y}{2}\right) \cos \left(\frac{x \mp y}{2}\right)$$

(e) $\cos x + \cos y = 2 \cos \left(\frac{x - y}{2}\right) \cos \left(\frac{x + y}{2}\right)$
(f) $\cos x - \cos y = -2 \sin \left(\frac{x - y}{2}\right) \sin \left(\frac{x + y}{2}\right)$

2. The Limit of a Sequence

Definition

(a) **Sequence**

A sequence is a function whose domain is \mathbb{N} or a subset of \mathbb{N} .

(b) Bounded Sequence

Let $\{a_n\}$ be a sequence. The sequence $\{a_n\}$ is said to be bounded if there exists $M \in \mathbb{R}$ such that $|a_n| < M$ for all $n \in \mathbb{N}$.

(c) Monotonic Sequence

Let $\{a_n\}$ be a sequence. The sequence $\{a_n\}$ is said to be monotonically increasing (decreasing) if for any m < n, we have $a_m \le a_n$ $(a_m \ge a_n)$. The sequence $\{a_n\}$ is monotonic if it is either monotonically increasing or monotonically decreasing.

Theorem

(a) Monotone Convergence Theorem

Let $\{a_n\}$ be a sequence. If the sequence $\{a_n\}$ is bounded and monotonic, then $\lim_{n \to \infty} a_n$ exists.

(b) Squeeze Theorem

Let $\{a_n\}, \{b_n\}, \{c_n\}$ be sequences such that $a_n \leq b_n \leq c_n$. If there exists $L \in \mathbb{R}$ such that $\lim_{n \to \infty} a_n = \lim_{n \to \infty} c_n = L$, then $\{b_n\}$ is convergent and $\lim_{n \to \infty} b_n = L$.

Exercise 1:

Show the following identities.

(a)
$$\cos 3x = 4\cos^3 x - 3\cos x$$
 (b) $\tan 3x =$

Exercise 2:

Let $\{a_n\}$ be a sequence. Find $\lim_{n \to \infty} a_n$ if it exists.

(a)
$$a_n = \frac{7n+3}{3n^2+6n-4}$$
 (b) $a_n = \frac{\sqrt{9n^2+7}}{2n+3}$
(c) $a_n = \cos\left(\frac{n\pi}{2}\right)$ (d) $a_n = \frac{\sin n}{n}$
(e) $a_1 = 0, a_n = \prod_{i=2}^n \left(1 - \frac{1}{i^2}\right)$ for $n \ge 2$

Exercise 3:

Let $\{a_n\}$ be the sequence defined as follows:

$$a_1 = 0,$$
 $a_{n+1} = \frac{2}{3}a_n + 1$

- (a) Determine whether the sequence $\{a_n\}$ is bounded.
- (b) Determine whether the sequence $\{a_n\}$ is monotonic.
- (c) Find the limit of the sequence $\{a_n\}$ if it exists.

Exercise 4:

- (a) Let $k, n \in \mathbb{N}$. For $1 \le k \le n$, show that (n+1-k) $k \ge n$. Hence, show that $(n!)^2 \ge n^n$.
- (b) State whether $\lim_{n \to \infty} (n!)^{-\frac{1}{n}}$ exists.

If yes, find the limit. If not, explain why it does not exist.

 $\frac{3\tan x - \tan^3 x}{1 - 3\tan^2 x}$

Solution

You should notice that full solutions may not be provided.

The exercises without full solutions are discussed in the tutorial classes on Thursday.

Exercise 1:

- (a) Please verify it yourself.
- (b) One has

$$\tan 3x = \frac{\tan 2x + \tan x}{1 - \tan 2x \tan x} = \frac{\frac{2\tan x}{1 - \tan^2 x} + \tan x}{1 - \frac{2\tan x}{1 - \tan^2 x} \tan x} = \frac{3\tan x - \tan^3 x}{1 - 3\tan^2 x}$$

Exercise 2:

(a) Answer: 0.

Please verify it yourself.

(b) One has

$$a_n = \frac{\frac{1}{n}\sqrt{9n^2 + 7}}{\frac{1}{n}(2n+3)} = \frac{\sqrt{9 + \frac{7}{n^2}}}{2 + \frac{3}{n}}$$

Hence, $\lim_{n \to \infty} a_n = \frac{3}{2}$.

- (c) $\left\{ \cos\left(\frac{n\pi}{2}\right) \right\}$ is an alternating sequence with four repeating terms: 0, -1, 0, 1. The limit does not exist.
- (d) One has $0 \le \frac{\sin n}{n} \le \frac{1}{n}$ and $\lim_{n \to \infty} \frac{1}{n} = 0$. By squeeze theorem, $\lim_{n \to \infty} \frac{\sin n}{n} = 0$.
- (e) For $n \ge 2$, one has

$$a_{n} = \left(1 - \frac{1}{2^{2}}\right) \left(1 - \frac{1}{3^{2}}\right) \cdots \left(1 - \frac{1}{n^{2}}\right)$$
$$= \left(1 - \frac{1}{2}\right) \left(1 + \frac{1}{2}\right) \left(1 - \frac{1}{3}\right) \left(1 + \frac{1}{3}\right) \cdots \left(1 - \frac{1}{n}\right) \left(1 + \frac{1}{n}\right)$$
$$= \frac{1}{2} \cdot \frac{n+1}{n} = \frac{1}{2} \cdot \left(1 + \frac{1}{n}\right)$$

Hence, $\lim_{n \to \infty} a_n = \frac{1}{2}$.

Exercise 3:

- (a) Let P(n) be the proposition that $0 \le a_n \le 3$. Since $0 \le a_1 = 0 \le 3$, P(1) is true. Suppose P(k) is true for some $k \in \mathbb{N}$. i.e. $0 \le a_k \le 3$. Then $0 \le 1 \le a_{k+1} = \frac{2}{3}a_k + 1 \le \frac{2}{3} \cdot 3 + 1 = 3$. Hence, P(k+1) is true. By the first principle of mathematical induction, P(n) is true for any $n \in \mathbb{N}$. Therefore, $0 \le a_n \le 3$. In particular, $|a_n| \le 3$ and hence $\{a_n\}$ is bounded.
- (b) One has $a_{n+1} a_n = \frac{2}{3}a_n + 1 a_n = 1 \frac{1}{3}a_n \ge 1 \frac{1}{3} \cdot 3$ (by (a)) = 0. Therefore, $a_{n+1} \ge a_n$ and hence $\{a_n\}$ is monotonic.
- (c) By monotone convergence theorem, since $\{a_n\}$ is bounded and monotonic, $\lim_{n \to \infty} a_n$ exists. Let $a = \lim_{n \to \infty} a_n$. One has $a = \frac{2}{3}a + 1$ and hence $a = \lim_{n \to \infty} a_n = 3$.

Remark: a_n is a sum of the first n terms of a geometric sequence.

Exercise 4:

(a) Observe that for any $a, b \in \mathbb{N}$, $ab+1 \ge a+b$ (verify it). Put a = n+1-k, b = k. Then $(n+1-k), k \ge (n+1-k)+k-1 = n$.

$$(n!)^{2} = \left(n \cdot (n-1) \cdots 2 \cdot 1\right) \left(n \cdot (n-1) \cdots 2 \cdot 1\right)$$
$$= \left(n \cdot 1\right) \left((n-1) \cdot 2\right) \cdots \left(2 \cdot (n-1)\right) \left(1 \cdot n\right) \ge \underbrace{n \cdot n \cdots n}_{n \text{ times}} = n^{n}$$

(b) By (a), one has $0 \le (n!)^{-\frac{1}{n}} \le n^{-\frac{1}{2}}$ and $\lim_{n \to \infty} n^{-\frac{1}{2}} = 0$. By Squeeze theorem, $\lim_{n \to \infty} (n!)^{-\frac{1}{n}} = 0$.