
MATH 1010DE Week 1

Sequences

1.1 Sequences and Limits
A sequence is an ordered list of numbers:

a1, a2, a3, . . . , an, . . .

Common notations:
{an}, {an}n∈N, {an}∞n=1

Example 1.1. •
an =

√
n , n ∈ N

{an}n∈N = {1,
√

2,
√

3, . . .}.

•
bn = (−1)n+1 1

n
, n ∈ N

{bn} =

{
1,−1

2
,
1

3
,−1

4
, . . .

}
.
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• Fibonacci Sequence
a1 = 1, a2 = 1

an = an−2 + an−1 for n ≥ 3.

{an} = {1, 1, 2, 3, 5, 8, 13, . . .}
In this case we say that the sequence {an} is defined recursively .

Sometimes, the terms an of a sequence approach a single value L as n tends
to infinity.

Definition 1.2. We say that the limit of a sequence {an} is equal to L if for all
real numbers ε > 0 the exists a number N > 0 such that |an − L| < ε for all
n > N .

If such a number L exists, we say that: {an} converges to L, and write:

lim
n→∞

an = L.

If no such L exists, we say that {an} diverges .
If the values of an increase (resp. decrease) without bound, we say that {an}

diverges to∞ (resp. −∞), and write:

lim
n→∞

an =∞ (resp. −∞).

Exercise 1.3. 1. WeBWorK

2. WeBWorK

3. WeBWorK

4. WeBWorK

1.1.1 Useful Properties

• Constant sequence
If an = c for all n, then limn→∞ an = limn→∞ c = c.
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• Sum/Difference rule
If both {an} and {bn} converge, then:

lim
n→∞

(an ± bn) = lim
n→∞

an ± lim
n→∞

bn.

• Product Rule
If both {an} and {bn} converge, then:

lim
n→∞

anbn =
(

lim
n→∞

an

)
·
(

lim
n→∞

bn

)
.

• Quotient Rule
If both {an} and {bn} converge, and limn→∞ bn 6= 0, then:

lim
n→∞

an
bn

=
limn→∞ an
limn→∞ bn

.

•
lim
n→∞

1

n
= 0.

• In general, if limn→∞ an = +∞ or limn→∞ an = −∞, we have:

lim
n→∞

1

an
= 0.
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1.1.2 Examples

• lim
n→∞

3n2 − 2n+ 7

2n2 + 3

= lim
n→∞

1
n2

1
n2

· 3n2 − 2n+ 7

2n2 + 3

= lim
n→∞

3− 2
n

+ 7
n2

2 + 3
n2

=
3

2
.

• lim
n→∞

−3n2

3
√

27n6 − 5n+ 1

= lim
n→∞

−3n2

n2 3

√
27− 5

n5 + 1
n6

= lim
n→∞

−3

3

√
27− 5

n5 + 1
n6

=
−3
3
√

27
= −1.

• lim
n→∞

√
4n2 + n−

√
4n2 − 1
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= lim
n→∞

(√
4n2 + n−

√
4n2 − 1

)
·
(√

4n2 + n+
√

4n2 − 1
)(√

4n2 + n+
√

4n2 − 1
)

= lim
n→∞

(4n2 + n)− (4n2 − 1)(√
4n2 + n+

√
4n2 − 1

)
= lim

n→∞

n+ 1√
4n2 + n+

√
4n2 − 1

= lim
n→∞

n+ 1

n
(√

4 + 1
n

+
√

4− 1
n2

)
= lim

n→∞

1 + 1
n(√

4 + 1
n

+
√

4− 1
n2

)
=

1

4
.

Exercise 1.4. • WeBWorK

1.1.3 Monotonic Sequences
Definition 1.5. A sequence {an} is said to be:

• increasing if an+1 ≥ an for all n,

• decreasing if an+1 ≤ an for all n.

A sequence is said to be monotonic if it is either increasing or decreasing.

Theorem 1.6 (Monotone Convergence Theorem). If {an} is either:
increasing (i.e. an+1 ≥ an for all n) and bounded above (i.e. There exists a

number M such that an ≤M for all n.), or
decreasing (i.e. an+1 ≤ an for all n) and bounded below (i.e. There exists a

number M such that an ≥M for all n.), then {an} converges.

Moreover,
if {an} is increasing and an ≤M for all n, then limn→∞ an ≤M .
If {an} is decreasing and an ≥M for all n, then limn→∞ an ≥M .

Example 1.7. Let {an} be a sequence of real numbers, which is defined by

a1 = 1 and an =
12an−1 + 12

an−1 + 13
for n > 1.
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1. Prove that 0 ≤ an ≤ 3. (Hint: Perhaps mathematical induction could be
useful here.)

2. Prove that {an} converges (i.e. lim
n→∞

an exists), then find its limit.

Solution. 1. First, we show that an ≥ 0 for all n ∈ N.
Base Step : By definition, a1 = 1 ≥ 0.
Inductive Step : Suppose an ≥ 0 for some n ∈ N. We want to show that

an+1 ≥ 0 also.
By the definition of the sequence, we have:

an+1 =
12an + 12

an + 13
.

By the induction hypothesis , i.e. an ≥ 0, we have:

an + 13 > 0 and 12an + 12 ≥ 0.

Hence, an+1 ≥ 0.
It now follows from the principle of mathematical induction that an ≥ 0 for

all n ∈ N.

Similary, to show that an ≤ 3, we first observe that by definition a1 = 1 ≤ 3.
Whenever an ≤ 3, we have:

3− an+1= 3− 12an + 12

an + 13

=
3an + 39− 12an − 12

an + 13

=
9(3− an)

an + 13
≥ 0,

which implies that an+1 ≤ 3 also. Hence, by mathematical induction we con-
clude that an ≤ 3 for all n ∈ N.
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2. Observe that for all n ∈ N, we have:

an+1 − an=
12an + 12

an + 13
− an

=
12an + 12− a2n − 13an

an + 13

= −a
2
n + an − 12

an + 13

= −(an − 3)(an + 4)

an + 13

≥ 0,

since 0 ≤ an ≤ 3, as shown in Part 1.
This shows that {an} is an increasing sequence bounded above by 3. Hence,

the limit L = lim
n→∞

an exists, by the Monotone Convergence Theorem.
To find L, we take the limit as n→∞ of both sides of the equation:

an =
12an−1 + 12

an−1 + 13
.

That is:
lim
n→∞

an = lim
n→∞

12an−1 + 12

an−1 + 13
,

which gives:

L =
12L+ 12

L+ 13
,

since limn→∞ an−1 = limn→∞ an = L.
The equation above implies that:

L2 + L− 12 = 0,

which gives L = 3 or L = −4. Since the sequence {an} is bounded below by 0,
we may eliminate the case L = −4.

We conclude that:
lim
n→∞

an = 3.

1.1.4 Sandwich Theorem
Theorem 1.8 (Sandwich Theorem for Sequences). Let {an}, {bn}, {cn} be se-
quences such that:

an ≤ bn ≤ cn
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for all n sufficiently large. If

lim
n→∞

an = lim
n→∞

cn = L,

then limn→∞ bn = L also.
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MATH 1010DE Week 2

Functions

2.1 Sandwich Theorem - Continued

Example 2.1. 1. Find the following limit: lim
n→∞

sin(2n) + (−1)n cos(2n)

n3
.

2. • Prove that
2n

n!
≤ 4

n
for all natural numbers n ≥ 2.

• Then, show that lim
n→∞

2n

n!
= 0.

3. Suppose 0 < a < 1. Let b = 1
a
− 1. For n ≥ 2, use the binomial theorem to

show that
1

an
≥ n(n− 1)

2
b2.

Then, show that:
lim
n→∞

nan = 0.

Exercise 2.2. Using the inequality:

1√
n2 + n

≤ 1√
n2 + r

≤ 1√
n2 + 1

, for r = 1, 2, 3, · · · , n,

9



prove that:

lim
n→∞

(
1√

n2 + 1
+

1√
n2 + 2

+ · · ·+ 1√
n2 + n

)
= 1.

Solution. We have:

1√
n2 + 1

+
1√

n2 + 2
+ · · ·+ 1√

n2 + n
≤ 1√

n2 + 1
+

1√
n2 + 1

+ · · ·+ 1√
n2 + 1︸ ︷︷ ︸

n times

=
n√
n2 + 1

,

and:

1√
n2 + 1

+
1√

n2 + 2
+ · · ·+ 1√

n2 + n
≥ 1√

n2 + n
+

1√
n2 + n

+ · · ·+ 1√
n2 + n︸ ︷︷ ︸

n times

=
n√

n2 + n
.

Since:
lim
n→∞

n√
n2 + 1

= lim
n→∞

n

n
√

1 + 1
n2

= lim
n→∞

1

1 + 1
n2

= 1,

and:
lim
n→∞

n√
n2 + n

= lim
n→∞

n

n
√

1 + 1
n

= lim
n→∞

1

1 + 1
n

= 1,

by the Sandwich Theorem we conclude that:

lim
n→∞

(
1√

n2 + 1
+

1√
n2 + 2

+ · · ·+ 1√
n2 + n

)
= 1.

2.2 Functions
Definition 2.3. A function:

f : A −→ B

is a rule of correspondence from one set A (called the domain) to another set B
(called the codomain).

Under this rule of correspondence, each element x ∈ A corresponds to exactly
one element f(x) ∈ B, called the value of f at x.
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In the context of this course, the domain A is usually some subset (intervals,
union of intervals) of R, while the codomain B is often presumed to be R. Some-
times, the domain of a function is not explicitly given, and a function is simply
defined by an expression in terms of an independent variable.

For example,

f(x) =

√
x+ 1

x− 2

In this case, the domain of f is assumed to be the natural domain (or maximal
domain , domain of definition ), namely the largest subset of R on which the
expression defining f is well-defined.

Example 2.4. For the function:

f(x) =

√
x+ 1

x− 2
,

the natural domain is:

Domain(f) =

{
x ∈ R

∣∣∣∣ x+ 1

x− 2
≥ 0

}
= (−∞,−1] ∪ (2,∞).

2.2.1 Graphs of Functions
For f : A −→ B where A,B are subsets of R, it is often useful to consider the
graph of f , namely the set of all points (x, y) in the xy-plane where x ∈ A and
y = f(x). By definition, any function f takes on a unique value f(x) for each
x in its domain, hence the graph of f necessarily passes the so-called "vertical
line test", namely, any vertical line which one draws in the xy-plane intersects the
graph of f at most once.

The graph of a circle, for example, is not the graph of any function, since there
are vertical lines which intersect the graph twice.

Exercise 2.5. Graph the functions f(x) =
x

2
and g(x) =

4

x
− 1 together, to

identify values of x for which
x

2
>

4

x
− 1.

Confirm your answer by solving the inequality algebraically.

Solution. The inequality holds if and only if:

x ∈ (−4, 0) ∪ (2,∞)
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2.2.2 Algebraic Operations on Functions
Definition 2.6. Given two functions:

f, g : A −→ R,

• Their sum/difference is:

f ± g : A −→ R,

(f ± g)(a) := f(a)± g(a), for all a ∈ A;

• Their product is:

fg : A −→ R,

fg(a) := f(a)g(a), for all a ∈ A;

• The quotient function
f

g
is:

f

g
: A′ −→ R,

f

g
(a) :=

f(a)

g(a)
, for all a ∈ A′,

where
A′ = {a ∈ A : g(a) 6= 0}.

More generally, For:
f : A −→ R,

g : B −→ R,

we define f ± g and fg as follows:

f ± g : A ∩B −→ R,

f ± g(x) := f(x)± g(x), x ∈ A ∩B.
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fg : A ∩B −→ R,

fg(x) := f(x)g(x), x ∈ A ∩B.

Similary, we define:
f

g
: A ∩B′ −→ R,

f

g
(x) =

f(x)

g(x)
, x ∈ A ∩B′,

where B′ = {b ∈ B : g(b) 6= 0}.

2.2.3 Composition of Functions
Given two functions:

f : A −→ B, g : B −→ C,

the composite function g ◦ f is defined as follows:

g ◦ f : A −→ C,

(g ◦ f)(a) := g(f(a)), for all a ∈ A.

More generally, the domain of g ◦ f is defined to be:

Domain(g ◦ f) = {a ∈ Domain(f) : f(a) ∈ Domain(g)}.

2.2.4 Inverse of a Function
The range or image of a function f : A −→ B is the set of all b ∈ B such that
b = f(a) for some a ∈ A.

Notation.

Image(f) = Range(f) := {b ∈ B : b = f(a) for some a ∈ A}.

Note that the range of f is not necessarily equal to the codomain B.

Definition 2.7. If Range(f) = B, we say that f is surjective or onto .
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Definition 2.8. If f(a) 6= f(a′) for all a, a′ ∈ Domain(f) such that a 6= a′, we
say that f is injective or one-to-one .

If f : A −→ B is injective, then there exists an inverse function:

f−1 : Range(f) −→ A

such that f−1◦f is the identity function onA, and f ◦f−1 is the identity function
on Range(f), that is:

•
f−1(f(a)) = a, for all a ∈ A,

•
f(f−1(b)) = b, for all b ∈ Range(f).

Example 2.9.
f : R −→ R,

f(x) := x2, x ∈ R.
is not injective, hence it has no inverse.

On the other hand,
f : R≥0 −→ R,

f(x) := x2, x ∈ R≥0;
is injective. It’s range is Range(f) = R≥0. Its inverse is:

f−1 : R≥0 −→ R≥0

f−1(y) =
√
y, y ∈ R≥0.

Similarly,
g : R≤0 −→ R,

g(x) := x2, x ∈ R≤0;
is also injective, with Range(g) = R≥0, and inverse:

g−1 : R≥0 −→ R≤0

g−1(y) = −√y, y ∈ R≥0.
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2.3 Piecewise Defined Functions
Example 2.10. •

f(x) =

{
−x+ 1 if − 2 ≤ x < 0

3x if 0 ≤ x ≤ 5

• The absolute value function

|x| =

{
−x if x < 0

x if x ≥ 0

Exercise 2.11. Let f : R −→ R be the function defined by:

f(x) = −3x+ 4− |x+ 1| − |x− 1|

for any x ∈ R.

1. Express the ’explicit formula’ of the function f as that of a piecewise defined
function, with one ’piece’ for each of (−∞,−1), [−1, 1), [1,+∞).

2. Sketch the graph of the function f .

3. Is f an injective function on R? Justify your answer.

4. What is the image of R under the function f?

Solution.

1.

f(x) =


−x+ 4 if x < −1

−3x+ 2 if −1 ≤ x < 1

−5x+ 4 if x ≥ 1

2.

3. f is strictly decreasing on R. Hence, f is injective on R.

4. The image of R under f is R.
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2.4 WeBWorK
1. WeBWorK

2. WeBWorK

3. WeBWorK

4. WeBWorK

5. WeBWorK

6. WeBWorK

2.5 Even and Odd Functions
Definition 2.12. Let f be a real-valued function defined on real numbers.

• It is said to be even if for any x ∈ Domain(f), −x also lies in Domain(f)
and:

f(−x) = f(x).

• It is said to be odd if for any x ∈ Domain(f), −x also lies in Domain(f)
and:

f(−x) = −f(x).

Example 2.13. 1. The polynomial f(x) = x4 +x2 + 1 is even, while the poly-
nomial g(x) = x5 + x3 + x is odd.

2. The function f(x) = cos x is even, while f(x) = sinx is odd.

3. The absolute value function is even.

Fact 2.14. 1. The sum of two even (resp. odd) functions is even (resp. odd).

2. The product of two even functions is even.

3. The product of two odd functions is also even.

4. The product of an even function with an odd function is odd.

For example, f(x) = x |x| is odd.
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MATH 1010DE Week 3

Functions, Limits, Sandwich Theorem

3.1 Limits of Functions on the Real Line
Let f : A −→ R be a function, where A ⊆ R. Let a be a point on the real line
such that f is defined on a neighborhood of a (though not necessarily at a itself).

Definition 3.1. We say that the limit of f at a is L if for all ε > 0, there exists
δ > 0 such that |f(x)− L| < ε whenever x satisfies 0 < |x− a| < δ.

If f has a limit L at a, we write:

lim
x→a

f(x) = L.

Note that the limit may exist even if a does not lie in the domain of f .

Remark. Intuitively, lim
x→a

f(x) = L means that the value f(x) approaches L as x

approaches a from either side, or that f(x) is very near L whenever x is very near
a. Obviously, the term "near" is somewhat vague, and it is precisely because of
this vagueness that mathematicians feel the need to define limits rigorously using
the "δ-ε" language.

Example 3.2. Consider f(x) =
x2 − 4

x+ 2
. Note that the function f is not defined at

−2.
Observe that for x near −2, for example, x = −2.001, or x = −1.9999, we

have:
f(−2.001) = −4.001,

f(−1.9999) = −3.9999,

which are close to −4.
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Moreover, as x "approaches" −2 (x = −2.001,−2.0001,−2.00001, . . .), we
have f(x) = −4.001,−4.0001,−4.00001. So, it appears f(x) approaches −4 as
x approaches −2. This suggests that the limit of f(x) at x = −2 is:

lim
x→−2

f(x) = −4.

This turns out to be true, and is not surprising, since we can rewrite f(x) as
follows:

f(x) =


(x+ 2)(x− 2)

x+ 2
, if x 6= −2;

undefined, if x = −2.

=

{
x− 2, if x 6= −2;

undefined, if x = −2.

Hence, all along we have really been asking what x− 2 tends to as x tends to
−2.

Definition 3.3. Let f : A −→ R be a function, where A ⊆ R is unbounded
towards +∞ and/or −∞. We say that the limit of f at∞ (resp. −∞) is L if for
all ε > 0, there exists a c ∈ R such that |f(x)− L| < ε whenever x > c (resp.
x < c).

If f has a limit L at∞ (resp −∞), we write:

lim
x→∞

f(x) = L

(
resp. lim

x→−∞
f(x) = L

)

3.1.1 Some Useful Identities
In the following idenities, the symbol a can be either a real number or ±∞.

1. For any constant c ∈ R, we have lim
x→a

c = c.

2. lim
x→a

x = a.

3. If limx→a f(x) = L, and limx→a g(x) = M , then:

• limx→a(f ± g)(x) = L±M.

• limx→a fg(x) = LM.

•
lim
x→a

f

g
(x) =

L

M

provided that M 6= 0.
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4. If limx→a f(x) = L, then:

lim
x→a

(f(x))n = Ln for all n ∈ N = {1, 2, 3, . . .},

and
lim
x→a

n
√
f(x) =

n
√
L for all odd positive integers n.

In particular, for all positive integer n, we have:

lim
x→a

xn = an.

5. If limx→a f(x) = L > 0, then limx→a
n
√
f(x) = n

√
L for all n ∈ N.

Example 3.4. Compute the following limits, if they exist:

• lim
x→−1

x2 − 1

x2 − 5x− 6

• lim
x→4

2−
√
x

16− x2

3.2 WeBWorK
1. WeBWorK

2. WeBWorK

3. WeBWorK

4. WeBWorK

5. WeBWorK

3.3 One-Sided Limits
• We write lim

x→a+
f(x) = L if f(x) approaches L as x approaches a from the

right . We call this L the right limit of f at a.

• Similarly, we write lim
x→a−

f(x) = L if f(x) approaches L as x approaches a

from the left . We call this L the left limit of f at a.
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The limit lim
x→a

f(x) is sometimes called the double-sided limit of f at a. It exists
if and only if both one-sided limits exist and are equal to each other. In which
case, we have:

lim
x→a

f(x) = lim
x→a+

f(x) = lim
x→a−

f(x).

Exercise 3.5. Define

f(x) =


x− 1 if 1 ≤ x ≤ 2,
2x+ 3 if 2 < x ≤ 4,
x2 otherwise.

Compute lim
x→2+

f(x) and lim
x→2−

f(x). Then, find lim
x→2

f(x), if it exists.

Answers.

1.

lim
x→2+

f(x) = 7

lim
x→2−

f(x) = 1

2. Since lim
x→2+

f(x) 6= lim
x→2−

f(x), the double-sided limit lim
x→2

f(x) does not

exist.

3.4 WeBWorK
1. WeBWorK

2. WeBWorK

3. WeBWorK

4. WeBWorK

5. WeBWorK

3.5 Sandwich Theorem for Functions on the Real
Line

Theorem 3.6. Let a ∈ R, A an open neighborhood of a which does not necessar-
ily contain a itself. Let f, g, h : A −→ R be functions such that:

g(x) ≤ f(x) ≤ h(x) for all x ∈ A,
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and
lim
x→a

g(x) = lim
x→a

h(x) = L.

Then, lim
x→a

f(x) = L.

Similary,

Theorem 3.7. If f, g, h are functions on R such that:

g(x) ≤ f(x) ≤ h(x)

for all x sufficiently large, and

lim
x→∞

g(x) = lim
x→∞

h(x) = L,

then lim
x→∞

f(x) = L.

Exercise 3.8. Find the following limits, if they exist:

• lim
x→∞

sinx

x

• lim
x→∞

x+ sinx

x− sinx

Theorem 3.9.
lim
x→0

sinx

x
= 1.

Corollary 3.10.
lim
x→0

1− cosx

x2
=

1

2
.

Proof.

lim
x→0

1− cosx

x2
= lim

x→0

1− cosx

x2
·
(

1 + cos x

1 + cos x

)
= lim

x→0

1− cos2 x

x2 (1 + cos x)

= lim
x→0

sin2 x

x2 (1 + cos x)

= lim
x→0

(
sinx

x

)2
1

1 + cos x

= 12 · 1

1 + 1
=

1

2
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Corollary 3.11.
lim
x→0

1− cosx

x
= 0 .

Exercise 3.12. Find the following limits, if they exist:

• lim
x→0

sin(5x)

tan(3x)

• lim
x→0

x3 cos
(
1
x

)
tanx

3.6 WeBWorK
1. WeBWorK

2. WeBWorK

3. WeBWorK

4. WeBWorK

5. WeBWorK

6. WeBWorK
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MATH 1010DE Week 4

Limits, Continuity

4.1 More Limit Identities
Example 4.1. Find:

• lim
x→0+

sin

(
1

x

)

• lim
x→0+

x sin

(
1

x

)
Definition 4.2. For each x ∈ R, we let:

ex =
∞∑
k=0

xk

k!
= 1 + x+

x2

2!
+
x3

3!
+ · · ·

It is known that:
ex = lim

n→∞

(
1 +

x

n

)n
.

Theorem 4.3.
lim
x→∞

(
1 +

1

x

)x
= lim

x→0
(1 + x)

1
x = e

Corollary 4.4.

lim
x→∞

(
1− 1

x

)x
= lim

x→0
(1− x)

1
x =

1

e

For all a ∈ R,
lim
x→∞

(
1 +

a

x

)x
= ea
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Exercise 4.5. Find:

lim
x→∞

(
x+ 1

x− 1

)x
Theorem 4.6. For all n ∈ {1, 2, 3, . . .}, we have:

lim
x→∞

xn

ex
= 0.

Corollary 4.7. For all n ∈ {1, 2, 3, . . .}, and b > 1, we have:

lim
x→∞

xn

bx
= 0.

Fact 4.8.
lim
x→0

ln(1 + x)

x
= 1.

From this may be further deduced that:

lim
t→0

et − 1

t
= 1,

by applying a change of variable:

x = et − 1.

4.2 Continuity
Definition 4.9. A function f : A −→ R is said to be continuous at c ∈ A if:

lim
x→c

f(x) = f(c).

A function is said to be continuous if it is continuous at every point in its domain.

Should c be an endpoint in the domain of f , the continuity of f at c is defined
in terms of a one-sided limit. That is, right limit if c is a left endpoint, and left
limit if c is a right endpoint. Hence, the function:

f(x) =
√
x

is continuous at x = 0, since Domain(f) = [0,∞), and:

lim
x→0+

f(x) = 0 = f(0).
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The following "elementary functions" are continuous at every element in their
domains:

f(x) = x,
1

x
, sinx, cosx, tanx, ex, lnx, arcsinx, arccosx, arctanx

Due to the laws of sum/difference/product/quotient for limits, the sum/differ-
ence/product/quotient of continuous functions is also continous.

In particular, polynomials and rational functions are all continuous on their
domains.

Theorem 4.10. For functions g, f with the property that lim
x→a

g(x) exists and f is

continuous at limx→a g(x), we have:

lim
x→a

f(g(x)) = f
(

lim
x→a

g(x)
)
.

Example 4.11. It follows from this theorem that:

lim
x→0

ln(1 + x)

x
= 1

It also follows from the previous theorem that any composite of continuous
functions is continuous.

Example 4.12. The following functions are all continuous, since they are the
sums, differences, products, quotients, or composites of other continuous func-
tions:

f(x) =
ecos(

1
x)

x7 − 9x2 + 23

g(x) =
1

arctanx
− 3
√

log5 (2x + 1)

h(x) = sin
(
x−3 +

(
cos
(
ex

2

+ 1
)))

Example 4.13. The following functions are continuous at every point on the real
line:

•

g(x) =


sinx

x
, x 6= 0;

1, x = 0;
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•

f(x) =

x2 cos

(
1

ex − 1

)
, x 6= 0;

0, x = 0;

Exercise 4.14. Let f : R→ R be a function that satisfies:

• f(x+ y) = f(x)f(y) for all x, y ∈ R;

• f(x) is continuous at x = 0 and f(0) 6= 0.

1. Show that f(0) = 1.

2. Show that f(x) is continuous on R.

4.2.1 WeBWorK
1. WeBWorK

2. WeBWorK

3. WeBWorK

4. WeBWorK

4.2.2 Further Properties of Continuous Functions
Theorem 4.15 (Intermediate Value Theorem IVT). If f : [a, b] −→ R is con-
tinuous, then f attains every value between f(a) and f(b). In other words, for
any y ∈ R between the values of f(a) and f(b), there exists c ∈ [a, b] such that
f(c) = y.

Exercise 4.16. • Show that f(x) = x5 +x2− 10 = 0 has a real root between
x = 1 and x = 2.

• Show that the range of f(x) = ex −
√
x contains [1,∞).

Theorem 4.17 (Extreme Value Theorem). If f is a continuous function defined
on a closed interval [a, b], then it attains both a maximum value and a minimum
value on [a, b].
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MATH 1010DE Week 5

Differentiation

5.1 Derivatives
Definition 5.1. We say that a function f is differentiable at c if the limit:

f ′(c) := lim
h→0

f(c+ h)− f(c)

h

exists. The limit f ′(c), if it exists, is called the derivative of f at c.

Interactive Example
We say that a function f is differentiable if it is differentiable at every point

in its domain.

Exercise 5.2. Let f(x) = |x|. Is f differentiable at x = 0? If so, find f ′(0).

Theorem 5.3. If a function f is differentiable at c, then it is also continuous at c.
(The converse is false in general.)

Example 5.4. Let f : R→ R be the function defined by

f(x) =


x3 if x ≤ 1;

ax+ b if x > 1.

Suppose f(x) differentiable at x = 1, find the values of a and b.

5.2 WeBWorK
1. WeBWorK
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2. WeBWorK

3. WeBWorK

4. WeBWorK

5. WeBWorK

6. WeBWorK

7. WeBWorK

8. WeBWorK

5.3 Tangent Line
If the derivative f ′(c) exists, then there exists a tangent line to the graph y = f(x)
of f at (c, f(c)). Moreover, the slope of the tangent line is f ′(c), and the tangent
line is the graph of the equation:

y = f ′(c)(x− c) + f(c).

Given f : A −→ R, the correspondence x 7→ f ′(x) defines the derivative func-
tion f ′ : A′ −→ R, where A′ is the set of all points c ∈ A at which f is differen-
tiable.
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5.4 Some Common Derivative Identities
f(x) f ′(x)

constant 0
ax+ b (a, b ∈ R) a

xn (n ∈ Z, n 6= 0, 1) nxn−1

xr (r ∈ R, x > 0) rxr−1

ex ex

ax (a > 0) (ln a)ax

ln |x| 1

x

loga x (a 6= 1, a > 0)
1

(ln a)x
sinx cosx
cosx − sinx
tanx sec2 x
secx secx tanx
cotx − csc2 x
cscx − cscx cotx

arctanx
1

x2 + 1

arcsinx (−1 < x < 1)
1√

1− x2

5.5 Leibniz Notation
If f is defined in terms of an independent variable x, we often denote f ′(x) by
df

dx
. Under this notation, for a given c ∈ R the value f ′(c) is denoted by:

df

dx

∣∣∣∣
x=c

5.6 Rules of Differentiation
Let f , g be functions differentiable at c ∈ R. Then:

Sum/Difference Rule
f ± g is differentiable at c, with:

(f ± g)′(c) = f ′(c)± g′(c).
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Proof.

(f + g)′(c) = lim
h→0

(f + g)(c+ h)− (f + g)(c)

h

= lim
h→0

f(c+ h) + g(c+ h)− f(c)− g(c)

h

= lim
h→0

[
f(c+ h)− f(c)

h
+
g(c+ h)− g(c)

h

]
. (∗)

Since by assumption both f ′(c) = limh→0
f(c+h)−f(c)

h
and g′(c) = limh→0

g(c+h)−g(c)
h

exist, by the sum rule for limits the expression (∗) is equal to:

f ′(c) + g′(c).

Exercise. Show that (f − g)′(c) = f ′(c)− g′(c).

Product Rule
fg is differentiable at c, with:

(fg)′(c) = f ′(c)g(c) + f(c)g′(c).

Quotient Rule
f/g is differentiable at c provided that g(c) 6= 0, in which case we have:(

f

g

)′
(c) =

g(c)f ′(c)− f(c)g′(c)

[g(c)]2
.

5.7 Chain Rule
Theorem 5.5. Suppose f is differentiable at c and g is differentiable at f(c), then
g ◦ f is differentiable at c, with:

(g ◦ f)′(c) = g′(f(c))f ′(c).
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In the Leibniz notation, the chain rule says that if f is a differentiable function
of u and u is a differentiable function of x, then:

df

dx
=
df

du

du

dx
,

df

dx

∣∣∣∣
x=c

=
df

du

∣∣∣∣
u=u(c)

du

dx

∣∣∣∣
x=c

Exercise 5.6. Let f : R→ R be the function defined by

f(x) =

{
x sin

(
1
x2

)
if x 6= 0;

0 if x = 0.

Find f ′.

5.8 WeBWorK
1. WeBWorK

2. WeBWorK

3. WeBWorK

4. WeBWorK

5. WeBWorK

6. WeBWorK

7. WeBWorK

8. WeBWorK

9. WeBWorK

10. WeBWorK

11. WeBWorK

12. WeBWorK
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MATH 1010DE Week 6

Implicit Differentiation, Higher Order Derivatives

6.1 Implicit Differentiation
Example 6.1. For x > 0,

d

dx
lnx =

1

x
.

Proof. Consider the equation:
elnx = x

Differentiating both sides with respect to x, and applying the Chain Rule, we have:

d

dx
elnx =

d

dx
x

elnx︸︷︷︸
=x

d

dx
lnx = 1

Hence,
d

dx
lnx =

1

x
.

Example 6.2. Find
d

dx
(xx), where x > 0.

For any x > 0, we have x = elnx. Hence,

xx =
(
elnx

)x
= ex lnx.
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So,

d

dx
(xx) =

d

dx
ex lnx

= ex lnx
d

dx
(x lnx) ( by the Chain Rule.)

= ex lnx
(
x · 1

x
+ lnx

)
( by the Product Rule.)

= ex lnx(1 + ln x) ( since x > 0.)

= (1 + lnx)xx.

Exercise 6.3. Consider the curve C : y4 − y cos(x)− x4 = 0.

1. Find
dy

dx
. Express your answer in terms of x, y only.

2. Let P =
(π

2
,−π

2

)
.

• Verify that the point P lies on the curve C.

• Find the equation of the tangent line to the curve C at the point P .

Solution. First, we differentiate both sides of the equation y4− y cos(x)−x4 = 0
with respect to x:

d

dx
(y4 − y cos(x)− x4) =

d

dx
0 (6.1)

By the chain rule, we have:

d

dx
y4 =

d (y4)

dy

dy

dx
= 4y3

dy

dx
.

Hence, equation (6.1) gives:

4y3
dy

dx
−
(
y(− sin(x)) +

dy

dx
· cos(x)

)
− 4x3 = 0.

Grouping all the terms involving dy
dx

together, we have:

(
4y3 − cosx

) dy
dx

= 4x3 − y sinx

Hence,
dy

dx
=

4x3 − y sinx

4y3 − cosx
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The tangent line to the curve C at the point (π/2,−π/2) is equal to:

dy

dx

∣∣∣∣
(π/2,−π/2)

=
4(π/2)3 + π/2

−4(π/2)3

Hence, the equation of the tangent line is:

y =

(
4(π/2)3 + π/2

−4(π/2)3

)
(x− π/2)− π/2

Theorem 6.4. Let f be an injective function differentiable at x = c. If f ′(c) 6= 0,
then f−1 is differentiable at f(c), with:(

f−1
)′

(f(c)) =
1

f ′(c)
.

Equivalently, for any y ∈ Range(f), if f is differentiable at x = f−1(y), and
f ′(f−1(y)) 6= 0, then: (

f−1
)′

(y) =
1

f ′(f−1(y))
.

Example 6.5. Consider the injective function:

f : [−π/2, π/2] −→ R,

f(x) = sin x, x ∈ [−π/2, π/2].

The inverse of f is:

f−1 = arcsin : [−1, 1] −→ [−π/2, π/2].

Consider any y ∈ (−1, 1). We have y = f(x) = sin(x) for a unique x = arcsin y
in (−π/2, π/2). Since x ∈ (−π/2, π/2), we have f ′(x) = cos(x) 6= 0.

Hence, by Theorem 6.4, (f−1)′(y) exists, with:(
f−1
)′

(y) =
(
f−1
)′

(f(x)) =
1

f ′(x)
=

1

cosx
.

By the Pythagorean Theorem, we know that:

cosx = ±
√

1− sin2 x .

Moreover, since x ∈ (−π/2, π/2), we have cosx > 0, so:

cosx = +
√

1− sin2 x =
√

1− sin2(arcsin(y)) =
√

1− y2.

In conclusion, for y ∈ (−1, 1), we have:

arcsin′ y =
(
f−1
)′

(y) =
1√

1− y2
.
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Example 6.6. Similary, we can find the derivative of arccos as follows:
The function arccos is the inverse function g−1 of the following injective func-

tion:
g(x) = cos x, x ∈ [0, π].

For any y ∈ (−1, 1), we have g−1(y) ∈ (0, π), so g′(g−1(y)) = − sin(arccos(y)) 6=
0. Hence, by Theorem 6.4, the function g−1 is differentiable at y ∈ (−1, 1), with:

(g−1)′(y) =
1

g′(g−1(y))
=

1

− sin(arccos(y)
.

By the Pythagorean Theorem, sinx = ±
√

1− cos2(x). Since arccos(y) ∈ (0, π)
for y ∈ (−1, 1), we have:

sin(arccos(y)) = +
√

1− cos2(arccos(y)) =
√

1− y2.

Hence,

arccos′ y = (g−1)′(y) = − 1√
1− y2

.

6.2 WeBWorK
1. WeBWorK

2. WeBWorK

3. WeBWorK

4. WeBWorK

5. WeBWorK

6. WeBWorK

6.3 Higher Order Derivatives
Let f be a function.

Its derivative f ′ is often called the first derivative of f .
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The derivative of f ′, denoted by f ′′, is called the second derivative of f .

If f ′′(c) exists, we say that f is twice differentiable at c.

For n ∈ N, the n-th derivative of f , denoted by f (n) is defined as the derivative
of the (n− 1)-st derivative of f .

If f (n)(c) exists, we say that f is n times differentiable at c.

We sometimes consider f to be the "zero"-th derivative of itself, i.e. f (0) := f .

In the Leibniz notation, we have:

f (n)(x) =
d

dx

d

dx
· · · d

dx︸ ︷︷ ︸
n times

f,

which is customarily written as:
dnf

dxn
.

Example 6.7. Consider the curve:

x2 + y2 = 1

Find
d2y

dx2
.

Solution. Applying implicit differentiation, we have:

d

dx

(
x2 + y2

)
=

d

dx
1

2x+ 2y
dy

dx
= 0 (6.2)

This shows that:
dy

dx
= −x

y
.
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Applying implicity differentiation to equation (6.2), we have:

d

dx

(
2x+ 2y

dy

dx

)
=

d

dx
0

2 + 2

(
y
d2y

dx2
+
dy

dx

dy

dx

)
= 0

It follows that:

y
d2y

dx2
= −1−

(
dy

dx

)2

= −1− x2

y2

= −
(
x2 + y2

y2

)
= −

(
1

y2

)
Hence,

d2y

dx2
= −

(
1

y3

)
Example 6.8. Let:

f(x) =

{
x4 sin

(
1
x

)
if x 6= 0;

0 if x = 0.

Find f ′′(0), if it exists.

Solution. For x 6= 0, we have:

f ′(x) =
d

dx
x4 sin(1/x)

= 4x3 sin(1/x) + x4 cos(1/x) · (−x−2)
= 4x3 sin(1/x)− x2 cos(1/x)

= x2(4x sin(1/x)− cos(1/x))

By the limit definition of the derivative, we have:

f ′(0) = lim
h→0

f(0 + h)− f(0)

h

= lim
h→0

h4 sin(1/h)− 0

h
= lim

h→0
h3 sin(1/h) = 0 (by Sandwich Theorem)
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Hence,

f ′(x) =

{
x2(4x sin(1/x)− cos(1/x)), x 6= 0;

0, x = 0.

By definition:

f ′′(0) = (f ′)′(0) = lim
h→0

f ′(0 + h)− f ′(0)

h
.

Hence,

f ′′(0) = lim
h→0

h2(4h sin(1/h)− cos(1/h))− 0

h
= lim

h→0
h(4h sin(1/h)− cos(1/h))

= 0 (again by Sandwich Theorem).

Theorem 6.9 (General Leibniz Rule). Let n ∈ N. Given any functions f, g which
are n times differentiable at c, their product fg is also n times differentiable at c,
with:

(fg)(n)(c) =
n∑
k=0

Cn
k f

(k)(c)g(n−k)(c)

Notice that when n = 1 this rule is simply the product rule we have introduced
before.

Example 6.10. Consider h(x) = x2 sin(x). Then, h = fg, where f(x) = x2 and
g(x) = sin(x).

We have:
f ′(x) = 2x, f ′′(x) = 2, f (3)(x) = 0.

g′(x) = cos(x), g′′(x) = − sinx, g(3)(x) = − cos(x).

Hence, by the General Leibniz Rule, the first, second and third derivatives of h
may be computed as follows:

h′(x) = fg′(x) + f ′g(x)

= x2 cos(x) + 2x sin(x)

h′′(x) = fg′′(x) + 2f ′g′(x) + f ′′g(x)

= x2(− sin(x)) + 2(2x) cos(x) + 2 sin(x)

h(3)(x) = fg(3)(x) + 3f ′g′′(x) + 3f ′′g′(x) + f (3)g(x)

= x2(− cos(x)) + 3(2x)(− sin(x)) + 3(2) cos(x) + 0 · sin(x)

= −x2 cos(x)− 6x sin(x) + 6 cos(x)
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6.4 WeBWorK
1. WeBWorK

2. WeBWorK

3. WeBWorK

4. WeBWorK

5. WeBWorK

6. WeBWorK

7. WeBWorK

39

https://www.math.cuhk.edu.hk/~pschan/cranach-dev/?xml=https://raw.githubusercontent.com/pschan-gh/math1010/devel/weeks1-13.xml&slide=80
https://www.math.cuhk.edu.hk/~pschan/cranach-dev/?xml=https://raw.githubusercontent.com/pschan-gh/math1010/devel/weeks1-13.xml&slide=80
https://www.math.cuhk.edu.hk/~pschan/cranach-dev/?xml=https://raw.githubusercontent.com/pschan-gh/math1010/devel/weeks1-13.xml&slide=80
https://www.math.cuhk.edu.hk/~pschan/cranach-dev/?xml=https://raw.githubusercontent.com/pschan-gh/math1010/devel/weeks1-13.xml&slide=80
https://www.math.cuhk.edu.hk/~pschan/cranach-dev/?xml=https://raw.githubusercontent.com/pschan-gh/math1010/devel/weeks1-13.xml&slide=80
https://www.math.cuhk.edu.hk/~pschan/cranach-dev/?xml=https://raw.githubusercontent.com/pschan-gh/math1010/devel/weeks1-13.xml&slide=80
https://www.math.cuhk.edu.hk/~pschan/cranach-dev/?xml=https://raw.githubusercontent.com/pschan-gh/math1010/devel/weeks1-13.xml&slide=80


MATH 1010DE Week 7

Mean Value Theorem

Theorem 7.1 (Extreme Value Theorem). If f is a continuous function defined on
a closed interval [a, b], then it attains both a maximum value and a minimum value
on [a, b].

7.1 The Mean Value Theorem
Theorem 7.2 (Rolle’s Theorem). Let f : [a, b] −→ R be a function which is
continuous on [a, b] and differentiable on (a, b) (i.e. f ′(x) exists for all x ∈ (a, b)).
If f(a) = f(b), then there exists c ∈ (a, b) such that f ′(c) = 0.

Interactive Example

Proof. Sketch of Proof. First, it follows from the Extreme Value Theorem that f
has an absolute maximum or minimum at a point c in (a, b). It may then be shown
that:

f ′(c) = lim
h→0

f(c+ h)− f(c)

h
= 0,

using that fact that if f(c) is an absolute extremum, then
f(c+ h)− f(c)

h
is both

≤ 0 and ≥ 0.

Theorem 7.3 (Mean Value Theorem MVT). (Also known as Lagrange’s Mean
Value Theorem)

If a function f : [a, b] −→ R is continuous on [a, b] and differentiable on (a, b),
then there exists c ∈ (a, b) such that:

f ′(c) =
f(b)− f(a)

b− a
Interactive Example
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Proof. Let f be a function which satisfies the conditions of the theorem. Define a
function g : [a, b] −→ R as follows:

g(x) = f(x)−
[(

f(b)− f(a)

b− a

)
(x− a) + f(a)

]
, x ∈ [a, b].

(Intuitively, g is obtained from f by subtracting from f the line segment joining
(a, f(a)) and (b, f(b)).) Observe that:

g(a) = g(b) = 0,

so the function g satisfies the conditions of Rolle’s Theorem. Hence, there exists
c ∈ (a, b) such that:

0 = g′(c) = f ′(c)− f(b)− f(a)

b− a
,

which implies that f ′(c) =
f(b)− f(a)

b− a
.

7.2 WeBWorK
1. WeBWorK

2. WeBWorK

3. WeBWorK

7.3 Applications of the Mean Value Theorem
Theorem 7.4. Let f be a differentiable function on an open interval (a, b). If
f ′(x) = 0 for all x ∈ (a, b), then f is constant on (a, b).

Proof. Exercise. For any x1, x2 ∈ (a, b), show that the difference f(x2) − f(x1)
is equal to 0.

Theorem 7.5. Let f be a differentiable function on an open interval (a, b). If
f ′(x) > 0 (resp. f ′(x) < 0) for all x ∈ (a, b), then f is strictly increasing (resp.
strictly decreasing) on (a, b).

Remark: If f is moreover continuous on [a, b], then f is strictly increasing
(resp. strictly decreasing) on [a, b] if f ′ is positive (resp. negative) on (a, b).
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Proof. We will prove the case f ′(x) > 0.
Suppose f ′(x) > 0 for all x ∈ (a, b). Given any x1, x2 ∈ (a, b), such that

x1 < x2, by the MVT there exists c ∈ (x1, x2) such that

f ′(c) =
f(x2)− f(x1)

x2 − x1
.

By the condition f ′(x) > 0 for all x ∈ (a, b), we have f ′(c) > 0. Also, x2 − x1 >
0. Hence:

f(x2)− f(x1) = f ′(c) · (x2 − x1) > 0.

This shows that f is strictly increasing on (a, b).

Example 7.6. Find the intervals where the function f(x) = x3 + 6x2 − 15x + 7
is increasing/decreasing.

Solution. We apply Theorem 7.5.
First, we find:

f ′(x) = 3x2 + 12x− 15

Observe that f ′ is defined and continuous everywhere. Hence, the intervals where
f ′ is positive/negative are separated by points c where f ′(c) = 0. (Such points are
called stationary points of f ).

Setting:

f ′(c) = 3c2 + 12c− 15 = 3(c2 + 4c− 5) = 3(c+ 5)(c− 1) = 0,

we see that the points where f ′ possibly changes sign are:

c = −5, 1

Consider now the sign chart :

f : ↗ ↘ ↗
f ′(x): + 0 − 0 +
x: (−∞,−5) −5 (−5, 1) 1 (1,∞)

It now follows from Theorem 7.5 and the continuity of f that:

• f is strictly increasing on the intervals (−∞,−5] and [1,∞).

• f is strictly decreasing on the interval [−5, 1].
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Example 7.7. Let:

f(x) =

{
(x+ 1)2, x < 0;

x+ 1, x ≥ 0.

Find the intervals where the function f is increasing/decreasing.

Solution. We carry out the same steps as in the previous example. We leave it as
an exercise to show that:

f ′(x) =


2x+ 2, x < 0;

undefined, x = 0;

1, x > 0.

Note that f ′ is not defined everywhere. In this case, the points where f ′ possibly
changes sign are points c where:

f ′(c) = 0 or f ′(c) is undefined.

Such points are called the critical points of f . (Note that the set of stationary
points is a subset of critical points).

Constructing a sign chart as in the previous example, we have:

f : ↘ ↗ ↗
f ′(x): − 0 + undefined +
x: (−∞,−1) −1 (−1, 0) 0 (0,∞)

Hence, by Theorem 7.5 , f is strictly decreasing on:

(−∞,−1],

and strictly increasing on both [−1, 0] and [0,∞). Since f is continuous at x = 0,
we conclude that f is strictly increasing on:

[−1,∞).

Exercise 7.8. Use the mean value theorem to prove that for x > 0,

x

1 + x
< ln(1 + x) < x.

Hence, deduce that for x > 0,

1

1 + x
< ln

(
1 +

1

x

)
<

1

x
.
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Solution. We first show that:

ln (1 + x) < x .

Consider the function:
f(x) = ln (1 + x)− x .

Then, f(0) = 0, and f ′(x) =
−x

1 + x
.

Hence, f ′(x) < 0 for all x > 0.
For any x > 0, by the Mean Value Theorem we have:

f(x)− f(0)

x− 0
= f ′(c)

for some c ∈ (0, x). Since c > 0, we have f ′(c) < 0, which implies that:

f(x)− f(0)

x− 0
< 0.

Since x > 0, we conclude that ln(1 + x) − x = f(x) = f(x) − f(0) < 0. We
conclude that:

ln(1 + x) < x,

for all x > 0. To show that x
1+x

< ln(1 + x), we proceed similarly.
Consider:

g(x) = ln(1 + x)− x

1 + x
.

Then, g(0) = 0, and:

g′(x) =
1

1 + x
− (1 + x)1− x(1)

(1 + x)2

=
x

(1 + x)2

> 0

for all x > 0.
Hence, for all x > 0, by the Mean Value Theorem we have:

g(x)− g(0)

x− 0
= g′(c) > 0,

where c is some element which lies in (0, x).
This shows that ln(1 + x)− x

1+x
= g(x) > 0. Hence,

ln(1 + x) >
x

1 + x
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for x > 0.
Finally, for all t > 0, we have 1

t
> 0. Applying the inequality:

x

1 + x
< ln(1 + x) < x

to x = 1
t
, we have:

1/t

1 + 1/t
< ln

(
1 +

1

t

)
<

1

t
,

which is equivalent to:

1

t+ 1
< ln

(
1 +

1

t

)
<

1

t
.
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MATH 1010DE Week 8

Curve Sketching

8.1 Absolute/Relative (Global/Local) Extrema
Consider a function f : A −→ R.

Definition 8.1. • If there is an element c ∈ A such that: f(c) ≤ f(x) for all
x ∈ A, we say that f(c) is the (global/absolute) minimum of f .

• If there is an element d ∈ A such that: f(d) ≥ f(x) for all x ∈ A, we say
that f(d) is the (global/absolute) maximum of f .

Definition 8.2. • If f(c) ≤ f(x) for all x in an open interval containing c,
we say that f has a local/relative minimum at c.

• If f(c) ≥ f(x) for all x in an open interval containing c, we say that f has
a local/relative maximum at c.

IMAGE
By KSmrq - http://commons.wikimedia.org/wiki/File:Extrema_example.svg ,

GFDL 1.2 , Link

Theorem 8.3 (First Derivative Test). Let f : A −→ R be a continuous function.
For c ∈ A, if there exists an open interval (a, b) containing c such that f ′(x) < 0
(in particular it exists) for all x ∈ (a, c), and f ′(x) > 0 for all x ∈ (c, b), then f
has a local minimum at c.

Similarly, if f ′(x) > 0 for all x ∈ (a, c) and f ′(x) < 0 for all x ∈ (c, b), then
f has a local maximum at c.
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Note: In the special case that the domain of f is an open interval (a, b), if f ′(x) >
0 for all x ∈ (a, c), and f ′(x) < 0 for all x ∈ (c, b), then f has an absolute
maximum at c.

Similarly f has an absolute minimum at c if each of the above inequalities is
reversed.

Example 8.4. • In Example 7.6, the function has a local maximum at x =
−5, and a local minimum at x = 1.

• In Example 7.7, the function has only one local extremum, namely a local
minimum at x = −1. In fact, f(−1) = 0 is the absolute minimum of f .

Exercise 8.5. f(x) = x
1
3 − 1

3
x− 2

3
for x > 0. Show that f(x) ≤ 0 for all x > 0.

Then, deduce that:

u
1
3v

2
3 ≤ 1

3
u+

2

3
v

for u, v > 0.

8.2 WeBWorK
1. WeBWorK

2. WeBWorK

3. WeBWorK

4. WeBWorK

5. WeBWorK

6. WeBWorK

Theorem 8.6 (Second Derivative Test). Let f be a function twice differentiable at
c ∈ R, such that f ′(c) = 0. If:

• f ′′(c) > 0, then f has a local minimum at c.

• f ′′(c) < 0, then f has a local maximum at c.

Proof. Sketch of Proof. Suppose f ′′(c) > 0, by the definition of f ′′(c) as the
derivative of f ′ at c, we have:

0 < f ′′(c) = lim
h→0

f ′(c+ h)− f ′(c)
h

= lim
h→0

f ′(c+ h)

h
.
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It follows from the above identity that f ′(c + h) is > 0 for sufficiently small
positive h, and < 0 for sufficiently small negative h.

Hence there is an open interval (a, b) containing c such that f ′ is negative on
(a, c) and positive on (c, b). So, f has a local minimum at c by the First Derivative
Test.

The case f ′′(c) < 0 may be proved similarly.

Example 8.7. Consider the function f(x) = x3 + 6x2 − 15x+ 7 in Example 7.6,
we have:

f ′′(x) = 6x+ 12

The function f has a two stationary points c = −5, 1 where f ′(c) = 0.
Since:

f ′′(−5) = −18, f ′′(1) = 18,

by the Second Derivative Test f(−5) is a local maximum, and f(1) is a local
minimum. (This corroborates the conclusions of the First Derivative Test applied
to the same function, see Example 8.4.)

Example 8.8. Consider g(x) = x4. Then, g′(x) = 4x3, which implies that c = 0
is the only point where g′(c) = 0.

The second derivative of g is g′′(x) = 12x2. Hence, g′′(c) = g′′(0) = 0.
In this case, no conclusion can be drawn from the Second Derivative Test,

regarding whether g(0) is a local minimum, maximum, or neither.
However, one can still apply the First Derivative Test to conclude that f(0) =

0 is a local minimum.

8.3 Concavity
Let f be a twice differentiable function. If f ′′ is positive (resp. negative) on an
open interval (a, b), then the graph of f over (a, b) is concave up (resp. down
). This is due to the fact that f ′′ being positive (resp. negative) corresponds to f ′

being increasing (resp. decreasing).

IMAGE
By dino -

http://en.wikipedia.org/wiki/File:Animated_illustration_of_inflection_point.gif
Public Domain, Link

A point on the graph of f where the concavity changes is called an inflection
point. It corresponds to a point in the domain of f where f ′′ changes sign.
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Example 8.9. Sketch the graph of:

f(x) =
x2 + x− 2

x2

by first finding the following information about f :

1. Domain.
{x ∈ R : x 6= 0} = (−∞, 0) ∪ (0,∞)

2. x-intercepts (if sufficiently easy to find), and y-intercept. f(x) = 0 if and
only if x 6= 0 and x2 +x− 2 = (x− 1)(x+ 2) = 0. Hence, the x-intercepts
are:

x = 1,−2.

In general, the y-intercept of the graph of a function is the value of the func-
tion at x = 0. In this case, 0 is not in the domain of f , hence the graph of f
has no y-intercept.

3. Asymptotes (Horizontal, Vertical, Oblique)

lim
x→∞

f(x) = lim
x→−∞

f(x) = 1.

Hence, the graph of f has one horizontal asymptote: y = 1. The value f(x)
is defined for all x 6= 0. Hence, f , being a rational function, is continuous
at all x 6= 0. So, there are no vertical asymptotes at x 6= 0. Near x = 0, we
have:

lim
x→0−

f(x) = lim
x→0+

f(x) = −∞.

Hence, the graph of f has a vertical asymptote at x = 0. Since f(x) ap-
proaches 1 as x approaches ±∞, the graph of f has no oblique asymptote.
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4. Intervals where f is increasing/decreasing.

f ′(x) =
x2(2x+ 1)− (x2 + x− 2)2x

(x2)2

=
x2(2x+ 1)− (x2 + x− 2)2x

(x2)2

=
1

x3
(4− x)

Hence, the points c where f ′ possibly changes sign are c = 0, 4.

y = f(x): ↘ ↗ ↘
f ′(x): − + −
x: (−∞, 0) (0, 4) (4,∞)

It follows from the sign chart that f is increasing on (0, 4], and decreasing
on (−∞, 0) and [4,∞).

5. "Turning Points" on the graph of f (i.e. points corresponding to local ex-
trema).

It follows from the sign chart above that f as a local maximum at x = 4.
The corresponding point on the graph is (4, f(4)) = (4, 9/8).

6. Intervals where f is concave up/down.

The second derivative of f is:

f ′′(x) =
1

x4
(2x− 12)

The points where f ′′ possibly changes sign are points p where f ′′(p) = 0, or
where f ′′(p) is undefined. In this case, there are two such point: p = 0, 6.
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y = f(x): ∩ ∩ ∪
f ′′(x): − − +
x: (−∞, 0) (0, 6) (6,∞)

It follows from this sign chart that f is concave up on (6,∞), and concave
down on (−∞, 0) and (0, 6).

7. Inflection points on the graph of f . It follows from the sign chart for f ′′ that
(6, f(6)) = (6, 10/9) is the only reflection point on the graph of f .

Graph

y =
x2 + x− 2

x2

Example 8.10. Following the guidelines of the previous example, sketch the graph
of:

1. f(x) = |x+ 1| (3− x)

2. f(x) = x+ 1
|x|

Solution. 1. Domain: R. x-intercepts: x = −1, 3. y-intercept: y = f(0) = 3.
Asymptotes: None.

f ′(x) =


2x− 2 x < −1;

undefined x = −1;

−2x+ 2 x > −1.

Critical points: c = −1, 1.

f ′′(x) =


2 x < −1;

undefined x = −1;

−2 x > −1.

Inflection point: p = −1.
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y = f(x): ∪ ↘ ∩ ↗ ∩ ↘
f ′(x): − + −
f ′′(x): + − −
x: (−∞,−1) (−1, 1) (1,∞)

2. In general, if one can rewrite a function f (e.g. using long division if f is a
rational function) in the form:

f(x) = mx+ b+ g(x),

such that lim
x→±∞

g(x) = 0, and m, b are constants, then one can readily

conclude that y = mx+ b is an asymptote for the graph of f . If m 6= 0, we
call y = mx+ b an oblique asymptote. If m = 0, then y = b is a horizontal

asymptote. In this example, since lim
x→±∞

1

|x|
= 0, the graph of f(x) = x+ 1

|x|

has an oblique asymptote: y = x. We leave the rest of the calculations as
an exercise. Hint :

f(x) =

{
x− 1

x
x < 0;

x+ 1
x

x > 0.

The resulting graph is as follows:

Example 8.11. Consider the function f(x) = 5x2+2
x+1

. We have:

f(x) = 5x− 5 +
7

x+ 1

Since limx→±∞
7

x+1
= 0, the graph of f approaches the line y = 5x − 5 as x

approaches ±∞.
We conclude that y = 5x− 5 is an oblique asymptote for the graph of f .

In general, if the graph of f approaches the line correpsonding to l(x) =
mx+ b, as x tends to ±∞, we have:

m = lim
x→±∞

f(x)

x
.

and
b = lim

x→±∞
(f(x)−mx).
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Example 8.12. Let g(x) =
√
x2 + 1 + 4.

Exercise.
lim
x→∞

f(x)

x
= 1.

This suggests that y = f(x) approaches y = x+ b as x→∞, where:
Exercise.

b = lim
x→∞

(f(x)− 1 · x) = 4.

Hence, y = f(x) approaches y = x+ 4 as x tends to∞.
Similary, as x tends to −∞, we have:
Exercise.

m = lim
x→−∞

f(x)

x
= −1.

b = lim
x→±−∞

(f(x)− 1 · x) = 4.

So, y = f(x) approaches y = −x+ 4 as x tends to −∞.
We conclude that the graph of f has two oblique asymptotes:

y = x+ 4,

y = −x+ 4.
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MATH 1010DE Week 9

L’Hôpital’s Rule, Taylor Series

9.1 L’Hôpital’s Rule
Theorem 9.1 (Cauchy’s Mean Value Theorem). If f, g : [a, b] −→ R are functions
which are continuous on [a, b] and differentiable on (a, b), and g(a) 6= g(b), then
there exists c ∈ (a, b) such that:

f ′(c)

g′(c)
=
f(b)− f(a)

g(b)− g(a)

Proof. Exercise. Apply Rolle’s Theorem to:

h(x) = f(x)(g(b)− g(a))− g(x)(f(b)− f(a))

IMAGE

Theorem 9.2 (L’Hôpital’s Rule). Let c ∈ R. Let I = (a, b) be an open interval
containing c. Let f, g be functions which are differentiable at every point in (a, c)∪
(c, b). Suppose:

• lim
x→c

f(x) and lim
x→c

g(x) are both equal to 0 or both equal to ±∞.

• lim
x→c

f ′(x)

g′(x)
exists.

(• g′(x) 6= 0 for all x 6= c in I .)
Then,

lim
x→c

f(x)

g(x)
= lim

x→c

f ′(x)

g′(x)
.
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Proof. (Sketch) We consider the special case where:

• lim
x→c

f(x) = lim
x→c

g(x) = 0.

• f and g are continuous at x = c.

For such functions f, g, we have:

f(c) = g(c) = 0.

Hence:

f(x)

g(x)
=
f(x)− f(c)

g(x)− g(c)
=
f ′(tx)

g′(tx)

for some tx between c and x by Cauchy’s Mean Value Theorem.
As x approaches c, the element tx lying between x and c must also approach

c.

Hence, if the limit lim
x→c

f ′(x)

g′(x)
exists, then intuitively it follows that:

lim
x→c

f(x)

g(x)
= lim

tx→c

f ′(tx)

g′(tx)

= lim
t→c

f ′(t)

g′(t)
.

(Optional Exercise : To prove the above equality rigorously, one could, for ex-
ample, apply the sequential criterion for the limit of a function .)

9.1.1 Indeterminate Forms

• 0
0

• ∞∞
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• 0 · ∞

• ∞−∞

• 00

• ∞0

• 1∞

Here, for example, 1∞ represents the situation lim
x→c

f(x)g(x) where lim
x→c

f(x) =

1 and lim
x→c

g(x) =∞.
Hence, the following limit corresponds to the indeterminate form 1∞:

lim
x→∞

(
1 +

1

x

)x
.

Example 9.3. Use l’Hôpital’s rule to evaluate the following limits:

1. lim
x→0

ex − 1− x− x2

2

x3

Solution.

lim
x→0

(
ex − 1− x− x2

2

)
= 0.

lim
x→0

x3 = 0.
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lim
x→0

(
ex − 1− x− x2

2

)′
(x3)′

= lim
x→0

ex − 1− x
3x2

(
→ 0

0

)
lim
x→0

(ex − 1− x)′

(3x2)′
= lim

x→0

ex − 1

6x

=
1

6
lim
x→0

ex − 1

x

=
1

6

Hence, by l’Hôpital’s rule,

lim
x→0

ex − 1− x− x2

2

x3
= lim

x→0

(
ex − 1− x− x2

2

)′
(x3)′

= lim
x→0

(ex − 1− x)′

(3x2)′

=
1

6

2. lim
x→0+

x
1

1+ln x

Solution. (This limit corresponds to the indeterminate form 00.)

For x > 0, we have x = elnx. Hence,

lim
x→0+

x
1

1+ln x = lim
x→0+

e(
1

1+ln x) lnx = elimx→0+
ln x

1+ln x

The last equality holds because f(x) = ex is a continuous function.

The limit lim
x→0+

lnx

1 + ln x
corresponds to the indeterminate form −∞

−∞ . So, it is

possible in this case to apply l’Hopital’s rule to help find the limit.

lim
x→0+

(lnx)′

(1 + ln x)′
= lim

x→0+

1
x
1
x

= lim
x→0+

x

x

= 1
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By l’Hopital’s rule, it now follows that:

lim
x→0+

lnx

1 + ln x
= 1.

Hence,

lim
x→0+

x
1

1+ln x = elimx→0+
ln x

1+ln x

= e1

= e.

3. lim
x→+∞

x
(π

2
− tan−1 x

)
Solution. (This limit corresponds to the indeterminate form∞· 0.) Rewrite
the limit as follows:

lim
x→+∞

x
(π

2
− tan−1 x

)
= lim

x→+∞

π

2
− tan−1 x

1
x

(
→ 0

0

)
.

Now, compute:

lim
x→+∞

(π
2
− tan−1 x

)′
(
1
x

)′ = lim
x→+∞

− 1
1+x2

− 1
x2

= lim
x→+∞

x2

1 + x2

= lim
x→+∞

1(
1 + 1

x2

)
= 1

Hence, by l’Hopital’s rule,

lim
x→+∞

x
(π

2
− tan−1 x

)
= 1.
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4. lim
x→+∞

(ex + x)
1
x

Solution. (This limit corresponds to the indeterminate form∞0.) We have:

lim
x→+∞

(ex + x)
1
x = lim

x→+∞

(
eln(e

x+x)
) 1

x

= lim
x→+∞

e
ln(ex+x)

x

= e
lim

x→+∞
ln(ex+x)

x

The limit lim
x→+∞

ln(ex+x)
x

corresponds to the indeterminate form ∞
∞ .

lim
x→+∞

(ln(ex + x))′

(x)′
= lim

x→+∞

ex + 1

ex + x

= lim
x→+∞

ex
(
1 + 1

ex

)
ex
(
1 + x

ex

)
= lim

x→+∞

1 + 1
ex

1 + x
ex

= 1.

Hence, by l’Hopital’s rule,

lim
x→+∞

ln(ex + x)

x
= lim

x→+∞

(ln(ex + x))′

(x)′

= lim
x→+∞

ex + 1

ex + x

= 1.

It now follows that:

lim
x→+∞

(ex + x)
1
x = e

lim
x→+∞

ln(ex+x)
x = e1 = e.
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5. lim
x→0

1− x cotx

x sinx

Solution. (This limit corresponds to the indeterminate form 0
0
.) Note that

cotx =
cosx

sinx
. Rewrite the limit as follows:

lim
x→0

1− x cotx

x sinx
= lim

x→0

sinx− x cosx

x sin2 x

(
→ 0

0

)
One’s first instinct might be to differentiate both numerator and denomina-
tor right away. But this seems unwise, since, looking further down the road,
we would have to deal with an indeterminate form whose denominator is
(x sin2 x)′ = 2x sinx cosx+ sin2 x. Repeating the differentiation of the nu-
merator and denominator would only make the expression more and more
complicated.

A cleverer way would be to rewrite the limit as follows:

lim
x→0

sinx− x cosx

x sin2 x
= lim

x→0

sinx− x cosx

x3
· x2

sin2 x
.

This is motivated by the observation that sin2 x is very close to x2 when x
is close to 0.

First, we have:

lim
x→0

x2

sin2 x
=
(

lim
x→0

x

sinx

)2
= 1.

The limit lim
x→0

sinx− x cosx

x3
corresponds to the indeterminate form 0

0
. Dif-

ferentiating both numerator and denominator, we have:

lim
x→0

(sinx− x cosx)′

(x3)′
= lim

x→0

cosx+ x sinx− cosx

3x2

= lim
x→0

x sinx

3x2

= lim
x→0

sinx

3x

=
1

3
.

Hence, by l’Hopital’s rule we have:

lim
x→0

sinx− x cosx

x3
= lim

x→0

(sinx− x cosx)′

(x3)′
=

1

3
.
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It now follows that:

lim
x→0

1− x cotx

x sinx
= lim

x→0

sinx− x cosx

x3
· lim
x→0

x2

sin2 x

=
1

3
· 1

=
1

3
.

Exercise 9.4. 1. WeBWorK

2. WeBWorK

3. WeBWorK

4. WeBWorK

5. WeBWorK

6. WeBWorK

7. WeBWorK

8. WeBWorK

9. WeBWorK

Important Note. If limx→c f(x) = limx→c g(x) = 0 or ±∞, and lim
x→c

f ′(x)

g′(x)

does not exist, it DOES NOT follow that lim
x→c

f(x)

g(x)
does not exist.

Example 9.5.

lim
x→∞

x+ sinx

x

9.2 Taylor Series
Definition 9.6. Given a function f which is n times differentiable at a. The n-th
Taylor polynomial of f (centered) at a is:

P (x) =
n∑
k=0

f (k)(a)

k!
(x− a)k.

61

https://www.math.cuhk.edu.hk/~pschan/cranach-dev/?xml=https://raw.githubusercontent.com/pschan-gh/math1010/devel/weeks1-13.xml&slide=108
https://www.math.cuhk.edu.hk/~pschan/cranach-dev/?xml=https://raw.githubusercontent.com/pschan-gh/math1010/devel/weeks1-13.xml&slide=108
https://www.math.cuhk.edu.hk/~pschan/cranach-dev/?xml=https://raw.githubusercontent.com/pschan-gh/math1010/devel/weeks1-13.xml&slide=108
https://www.math.cuhk.edu.hk/~pschan/cranach-dev/?xml=https://raw.githubusercontent.com/pschan-gh/math1010/devel/weeks1-13.xml&slide=108
https://www.math.cuhk.edu.hk/~pschan/cranach-dev/?xml=https://raw.githubusercontent.com/pschan-gh/math1010/devel/weeks1-13.xml&slide=108
https://www.math.cuhk.edu.hk/~pschan/cranach-dev/?xml=https://raw.githubusercontent.com/pschan-gh/math1010/devel/weeks1-13.xml&slide=108
https://www.math.cuhk.edu.hk/~pschan/cranach-dev/?xml=https://raw.githubusercontent.com/pschan-gh/math1010/devel/weeks1-13.xml&slide=108
https://www.math.cuhk.edu.hk/~pschan/cranach-dev/?xml=https://raw.githubusercontent.com/pschan-gh/math1010/devel/weeks1-13.xml&slide=108
https://www.math.cuhk.edu.hk/~pschan/cranach-dev/?xml=https://raw.githubusercontent.com/pschan-gh/math1010/devel/weeks1-13.xml&slide=108


Observe that:
P (k)(a) = f (k)(a),

for k = 0, 1, 2, . . . , n.

Example 9.7. The Taylor polynomials at a = 0 for various functions f are as
follows:

f(x) P (x)

cosx 1− x2

2!
+
x4

4!
− · · ·+ (−1)n

x2n

(2n)!

sinx x− x3

3!
+
x5

5!
− · · ·+ (−1)n

x2n+1

(2n+ 1)!

ex 1 + x+
x2

2!
+
x3

3!
+ · · ·+ xn

n!

ln(1 + x) x− x2

2
+
x3

3
− · · ·+ (−1)n+1x

n

n
1

1− x
1 + x+ x2 + x3 + · · ·+ xn

Note, for example, that the 5-th and 6-th Taylor polynomials of f(x) = sinx
at x = 0 both have degree 5. Hence, an n-th Taylor polynomial does not neces-
sarily have degree n.

• Taylor polynomials of f(x) = sinx centered at a = 0.

• Taylor polynomials of f(x) = sinx centered at a = π/2.

Theorem 9.8 (Taylor’s Formula). Let n be a positive integer, and a ∈ R. Let f be
a function which is n + 1 times differentiable on an open interval I containing a.
Let:

Pn(x) =
n∑
k=0

f (k)(a)

k!
(x− a)k

= f(a) + f ′(a)(x− a) +
f (2)(a)

2!
(x− a)2 +

f (3)(a)

3!
(x− a)3

+ . . .+
f (n)(a)

n!
(x− a)n

be the n-th Taylor polynomial of f at a. Then, for any x ∈ I , we have:

f(x) = Pn(x) +Rn(x),
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where the remainder term Rn(x) is equal to:

f (n+1)(c)

(n+ 1)!
(x− a)n+1

for some c between a and x.

Note that the special case n = 0 is equivalent to (Lagrange’s) Mean Value Theo-
rem.

Proof. Recall that P (k)
n (a) = f (k)(a) for k = 0, 1, 2, . . . , n. Moreover, observe

that P (k)
n = 0 for k > n, since Pn is a polynomial of degree at most n.

Let:
F (x) = f(x)− Pn(x), G(x) = (x− a)n+1.

Then, F (a) = G(a) = 0, and by Cauchy’s Mean Value Theorem ( Cauchy’s Mean
Value Theorem. ), we have:

f(x)− Pn(x)

(x− a)n+1
=
F (x)− F (a)

G(x)−G(a)

=
F ′(x1)

G′(x1)

=
f ′(x1)− P ′n(x1)

(n+ 1)(x1 − a)n

for some x1 between a and x.
Now let:

F1(x) = F ′(x) = f ′(x)− P ′n(x),

G1(x) = G′(x) = (n+ 1)(x− a)n.

Repeating the same procedure carried out before, we have:

f ′(x1)− P ′n(x1)

(n+ 1)(x1 − a)n
=
F ′1(x)

G′1(x)
=

f (2)(x2)− P (2)
n (x2)

(n+ 1)n(x2 − a)n−1

for some x2 between a and x1. Repeating this process n+ 1 times, we have:
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f(x)− Pn(x)

(x− a)n+1
=

f ′(x1)− P ′n(x1)

(n+ 1)(x1 − a)n

=
f (2)(x2)− P (2)

n (x2)

(n+ 1)n(x2 − a)n−1

...

=
f (n)(xn)− P (n)

n (xn)

(n+ 1)n(n− 1) · · · 2(xn − a)

=
f (n+1)(xn+1)− 0

(n+ 1)!

for some xn+1 between a and x. Letting c = xn+1, the theorem follows.

Definition 9.9. Given a function f which is infinitely differentiable at a (i.e.
f (k)(a) is defined for k = 0, 1, 2, 3, . . .). The Taylor series of f (centered) at
a is the power series:

T (x) =
∞∑
k=0

f (k)(a)

k!
(x− a)k

= f(a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2 + · · ·+ f (k)(a)

k!
(x− a)k + · · ·

In general, for any power series of the form S(x) =
∞∑
k=0

ak(x− a)k, the value

of S at any given c ∈ R is by definition the limit:

S(c) := lim
n→∞

n∑
k=0

ak(c− a)k.

Note that this limit does not necessarily exist. If it does exist, we say that the
power series S converges at x = c, otherwise we say that it diverges at x = c.

Example 9.10. The Taylor series at a = 0 for various functions f are as follows:
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f(x) T (x)

cosx
∞∑
k=0

(−1)k
x2k

(2k)!

sinx
∞∑
k=0

(−1)k
x2k+1

(2k + 1)!

ex
∞∑
k=0

xk

k!

ln(1 + x)
∞∑
k=1

(−1)k+1x
k

k

1

1− x

∞∑
k=0

xk

Theorem 9.11 (Binomial Series). For α ∈ R, |x| < 1,

(1 + x)α =
∞∑
k=0

(
α

k

)
xk = 1 + αx+

α(α− 1)

2!
x2 + · · · ,

where: (
α

k

)
=
α(α− 1)(α− 2) · · · (α− k + 1)

k!
if k > 0,

(
α

0

)
= 1.

Example 9.12. In particular, for |x| < 1, we have:
√

1 + x = (1 + x)1/2

= 1 +
1

2
x+

(1/2)(1/2− 1)

2!
x2 +

(1/2)(1/2− 1)(1/2− 2)

3!
x3 + · · ·

Example 9.13. The Taylor T (x) series of f(x) = ex at a = 0 converges every-
where. Moreover, for each x ∈ R, we do have:

T (x) =
∞∑
k=0

1

k!
xk = ex.

Similarly, for all x ∈ R, we have:

∞∑
k=0

(−1)k

(2k + 1)!
x2k+1 = sinx

∞∑
k=0

(−1)k

(2k)!
x2k = cosx
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However,
The Taylor series of f(x) = ln(1 + x) at a = 0 is:

T (x) =
∞∑
k=1

(−1)k+1

k
xk,

which converges only for x ∈ (−1, 1].
For such x we do have:

T (x) = f(x).

In particular, we have:

ln 2 = ln(1 + 1) =
∞∑
k=1

(−1)k+1

k
1k = 1− 1

2
+

1

3
− 1

4
+ · · ·

Remark. There are functions whose Taylor series converge everywhere, but not
to the functions themselves.
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MATH 1010DE Week 10

Taylor Series, Indefinite Integrals, Integration by Substi-
tution, Integration by Parts

10.1 Shortcuts for Computing Taylor Series

Theorem 10.1. Let S(x) =
∞∑
k=0

ak(x − a)k be a power series which converges

on an open interval of the form (a − r, a + r), r > 0, then the function S(x) is
differentiable on (a− r, a+ r), with

S ′(x) =
∞∑
k=1

kak(x− a)k−1

= a1 + 2a2(x− a) + 3a3(x− a)2 + · · ·+ kak(x− a)k−1 + · · ·

for all x ∈ (a− r, a+ r).

Applying this theorem repeatedly, it may be shown that S(x) is in fact in-
finitely differentiable on (a−r, a+r), and its Taylor series at x = a is itself. That
is:

S(k)(a)

k!
= ak, k = 0, 1, 2, . . . .

Put differently:

Corollary 10.2. Let f be a function. If there is a sequence {ak}∞k=0 such that:

f(x) =
∞∑
k=0

ak(x− a)k

for all x in some open interval centered at a, then
∑∞

k=0 ak(x− a)k is the Taylor

series of f at x = a, with ak =
f (k)(a)

k!
.
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Corollary 10.3. If:

∞∑
k=0

ak(x− a)k =
∞∑
k=0

bk(x− a)k

for all x in some open interval centered at a, then ak = bk for all k.

Exercise 10.4. Find the Taylor series of f at the given point a.

f(x) a

sin(5x) 0
x3 cosx 0

sin(x− π) π
lnx 1
1

2− x
0

1

1 + x
0

1

1 + x2
0

x+ 1

x2 + x+ 1
0
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f(x) a Series

sin(5x) 0
∞∑
k=0

(−1)k52k+1

(2k + 1)!
x2k+1

x3 cosx 0
∞∑
k=0

(−1)k

(2k)!
x2k+3

sin(x− π) π

∞∑
k=0

(−1)k

(2k + 1)!
(x− π)2k+1

lnx 1
∞∑
k=1

(−1)k+1

k
(x− 1)k

1

x
1

∞∑
k=0

(−1)k(x− 1)k

1

1 + x
0

∞∑
k=0

(−1)kxk

1

2− x
=

1

2
· 1

1 +
(
−x

2

) 0
∞∑
k=0

1

2k+1
xk

1

1 + x2
0

∞∑
k=0

(−1)kx2k

1

(1 + x)2
= − d

dx

(
1

1 + x

)
0

∞∑
k=1

(−1)k+1kxk−1

x+ 1

x2 + x+ 1
=

x+ 1

x2 + x+ 1
· 1− x

1− x
0

∞∑
k=0

(
x3k − x3k+2

)
1

(1 + x)(2− x)
=

1

3

(
1

1 + x
+

1

2− x

)
0

∞∑
k=0

1

3

(
(−1)k +

1

2k+1

)
xk

arctanx 0
∞∑
k=0

(−1)k

2k + 1
x2k+1

10.2 WeBWorK
1. WeBWorK

2. WeBWorK

3. WeBWorK

4. WeBWorK
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It is sometimes useful to use Taylor series to find limits which involve indeter-
minate forms.

Example 10.5. •

lim
x→0

sinx− x− x3

x3

•
lim
x→0

sinx− x cosx

x sin2 x

10.3 WeBWorK
1. WeBWorK

2. WeBWorK

3. WeBWorK

4. WeBWorK

10.4 Indefinite Integrals
Definition 10.6. If F ′ = f , we say that F is an antiderivative of f .

If two functions F and G are both antiderivatives of f over (a, b), then F ′ =
G′ = f , hence:

(F −G)′ = F ′ −G′ = 0.

By a corollary of the mean value theorem, this implies that F − G is a constant
function on (a, b). That is, there exists C ∈ R, such that (F − G)(x) = C for all
x ∈ (a, b).

Put differently, if F is an antiderivative of f over (a, b), then any antiderivative
of f over (a, b) has the form F + C for some constant function C.

Definition 10.7. The collection of all antiderivatives of a function f is called the
indefinite integral of f , denoted by:∫

f(x) dx.

We call f(x) the integrand of
∫
f(x) dx.
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If F ′ = f , we write: ∫
f(x)dx = F + C,

where C denotes some arbitrary constant.

Example 10.8. Since d
dx
x2 = 2x, we write:∫

2x dx = x2 + C.

Note that x2 + 17 is also an antiderivative of 2x, hence it is equally valid to write:∫
2x dx = x2 + 17 + C.

10.5 Some Properties of Indefinite Integrals

•
∫

0 dx = C, where C is some constant.

• For k ∈ R, we have
∫
k dx = kx+ C. In particular,

∫
dx =

∫
1 dx = x+ C.

• For k 6= −1, we have: ∫
xk dx =

xk+1

k + 1
+ C.

•
∫

1

x
dx = ln |x|+ C.

(This identity is not quite true. Will explain later.)

•
∫
ex dx = ex + C.

•
∫

cosx dx = sinx+ C.

•
∫

sinx dx = − cosx+ C.
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•
∫

sec2 x dx = tanx+ C.

•
∫

secx tanx dx = secx+ C.

•
∫

1

1 + x2
dx = arctanx+ C.

• For any functions f , g with antiderivatives F , G, respectively, we have:∫
(f(x) + g(x)) dx = F (x) +G(x) + C.

• For k ∈ R, and any function f with antiderivativeF , we have:
∫
kf(x) dx =

kF (x) + C.

Observe that for any a, b ∈ R, and differentiable function F , by the chain rule we
have:

d

dx
F (ax+ b) = aF ′(ax+ b)

Hence, in general we have:∫
f(ax+ b) dx =

1

a
F (ax+ b) + C,

where F is an antiderivative of f , and C is some constant.

Example 10.9. ∫
sin(5x+ π/4) dx = −1

5
cos(5x+ π/4) + C.

Example 10.10.∫ (
x3 +

4

x1/3
+ (x+ 7)9 + e2x+1

)
dx

=
1

4
x4 + 4

(
3

2

)
x2/3 +

1

10
(x+ 7)10 +

1

2
e2x+1 + C.
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Example 10.11.∫
sin2(x) dx =

∫ (
1− cos(2x)

2

)
dx =

∫ (
1

2
− 1

2
cos(2x)

)
dx

=

∫
1

2
dx− 1

2

∫
cos(2x)dx

=
x

2
− 1

4
sin(2x) + C

Similarly, it may be shown that:∫
cos2(x) dx =

x

2
+

1

4
sin(2x) + C

10.6 Integration by Substitution

Theorem 10.12. IfF ′ = f , and g is a differentiable function, then:
∫
f(g(x))g′(x) dx =

F (g(x)) + C.

Proof. This is just the Chain Rule in reverse, since:

d

dx
F (g(x)) = F ′(g(x))g′(x) = f(g(x))g′(x).

In Leibniz Notation, the theorem may be formulated as follows: Let u = g(x),

then
du

dx
= g′(x), and:∫

f(g(x))g′(x) dx =

∫
f(u)

du

dx
dx

=

∫
f(u) du = F (u) + C = F (g(x)) + C.

Example 10.13. Evaluate:

•
∫
x2ex

3+4 dx

•
∫

t√
t+ 2

dt

•
∫

tanx dx

•
∫
x5 + x3 + x

x2 + 1
dx
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10.7 WeBWorK
1. WeBWorK

2. WeBWorK

3. WeBWorK

4. WeBWorK

5. WeBWorK

6. WeBWorK

7. WeBWorK

8. WeBWorK

10.8 Integration by Parts
Let u, v be differentiable functions. Recall the Product Rule:

d

dx
(uv) = v

du

dx
+ u

dv

dx

Taking the indefinite integral (with respect to x) of both sides of the above equa-
tion, we have: ∫

d

dx
(uv)dx =

∫
v
du

dx
dx+

∫
u
dv

dx
dx,

which implies that: ∫
d(uv) =

∫
v du+

∫
u dv.

Hence,
∫
u dv = (uv)−

∫
v du

Example 10.14. Evaluate:

•
∫
xe3x dx

•
∫
x2ex dx

•
∫
x5ex dx
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•
∫
x5 sinx dx

•
∫

lnx dx

•
∫
ex sinx dx

10.9 WeBWorK
1. WeBWorK

2. WeBWorK

3. WeBWorK

4. WeBWorK

5. WeBWorK

6. WeBWorK

7. WeBWorK

8. WeBWorK
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MATH 1010DE Week 11

Indefinite Integrals, Integration of Trig. Functions, Trigono-
metric Substitution

11.1 Integration of Trigonometric Functions
We have seen that: ∫

sin2 x dx =
x

2
− 1

4
sin(2x) + C

∫
cos2 x dx =

x

2
+

1

4
sin(2x) + C

Example 11.1. Using: ∫
sec2 x dx = tanx+ C,∫
csc2 x dx = − cotx+ C,

and the identity 1 + tan2 x = sec2 x (which follows from the Pythagorean Theo-
rem), we may evaluate:

•
∫

tan2 x dx

∫
tan2 x dx =

∫
(sec2 x− 1) dx

= tanx− x+ C,

where C represents an arbitrary constant.
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•
∫

cot2 x dx

∫
cot2 x dx =

∫
(csc2 x− 1) dx

= − cotx− x+ C,

where C represents an arbitrary constant.

To evaluate an integral of the form:∫
sinm x cosn x dx, n,m ∈ N,

it is useful to make the following substitution:

u =

{
cosx, if m is odd,
sinx, if n is odd,

and then apply the Pythagorean Theorem cos2 x+sin2 x = 1 to rewrite the original
integral as: ∫

P (u) du,

where P (u) is some polynomial in u.

Example 11.2. Evaluate: ∫
cos5 x sin3 x dx

∫
cos5 x sin3 x dx =

∫
cos5 x sin2 x(sinx dx)

Let u = cosx. Then, du = sinx dx. So,∫
cos5 x sin3 x dx =

∫
cos5 x sin2 x(sinx dx)

=

∫
u5(1− u2)du

=

∫ (
u5 − u7

)
du

=
1

6
u6 − 1

8
u8 + C

=
1

6
cos6 x− 1

8
cos8 x+ C,

where C represents an arbitrary constant.
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Similarly, to evaluate integrals of the form:∫
tanm x secn x dx, m, n ∈ N,

it is useful to make the following substitution:

u =

{
secx, if m is odd,
tanx, if n is even,

and then apply the identity 1 + tan2 x = sec2 x to rewrite the original integral as:∫
P (u) du,

where P (u) is some polynomial in u.

Example 11.3. Evaluate:
∫

tan3 x secx dx.

∫
tan3 x secx dx =

∫
tan2 x secx tanx dx.

Let u = secx. Then, du = secx tanx dx, and:∫
tan3 x secx dx =

∫
tan2 x secx tanx dx

=

∫
(sec2 x− 1) secx tanx dx

=

∫
(u2 − 1) du

=
1

3
u3 − u+ C

=
1

3
sec3 x− secx+ C,

where C represents an arbitrary constant.

Claim 11.4. ∫
secx dx = ln |secx+ tanx|+ C,

where C represents an arbitrary constant.
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Proof. ∫
secx dx =

∫
1

cosx
dx

=

∫
cosx

cos2 x
dx

=

∫
cosx

1− sin2 x
dx

Let u = sinx. Then du = cosx dx, and consequently:∫
secx dx =

∫
1

1− u2
du

=

∫
1

(1− u)(1 + u)
du

=
1

2

∫ (
1

1− u
+

1

1 + u

)
du

=
1

2
(− ln |1− u|+ ln |1 + u|) + C

=
1

2
ln

∣∣∣∣1 + u

1− u

∣∣∣∣+ C

=
1

2
ln

∣∣∣∣(1 + u)2

1− u2

∣∣∣∣+ C

= ln

∣∣∣∣ 1 + u√
1− u2

∣∣∣∣+ C

= ln

∣∣∣∣1 + sin x

cosx

∣∣∣∣+ C

= ln |secx+ tanx|+ C,

where C represents an arbitrary constant.

Example 11.5. Evaluate:
∫

sec3 x dx. (Hint: Consider using integration by parts.)

∫
sec3 x dx =

∫
secx sec2 x dx.

Let U = secx, dV = sec2 x dx. Taking V = tanx, it follows from the Integration
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by Parts formula that:∫
sec3 x dx =

∫
UdV

= UV −
∫
V du

= secx tanx−
∫

tanx secx tanx dx

= secx tanx−
∫

secx tan2 x dx

= secx tanx−
∫

secx(sec2 x− 1) dx

= secx tanx−
∫ (

sec3 x− secx
)
dx

= secx tanx+ ln |secx+ tanx| −
∫

sec3 x dx

This implies that:

2

∫
sec3 x dx = secx tanx+ ln |secx+ tanx|+ C

where C represents an arbitrary constant. Hence:∫
sec3 x dx =

1

2
(secx tanx+ ln |secx+ tanx|) + C.

The following identities follow directly from the angle sum formulas of the
sine and cosine functions:

cosx cos y =
1

2
(cos(x+ y) + cos(x− y))

cosx sin y =
1

2
(sin(x+ y)− sin(x− y))

sinx sin y =
1

2
(cos(x− y)− cos(x+ y))

They are useful for the evaluation of integrals such as:

Example 11.6. ∫
cos(3x) sin(5x) dx
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∫
cos(3x) sin(5x) dx =

∫
1

2
(sin(3x+ 5x)− sin(3x− 5x)) dx

=
1

2

∫
(sin(8x) + sin(2x)) dx

=
1

2

(
−1

8
cos(8x)− 1

2
cos(2x)

)
+ C,

where C represents an arbitrary constant.

11.2 WeBWorK
1. WeBWorK

2. WeBWorK

3. WeBWorK

4. WeBWorK

5. WeBWorK

6. WeBWorK

7. WeBWorK

8. WeBWorK

9. WeBWorK

10. WeBWorK

11.3 Trigonometric Substitution
When an integrand involves

√
x2 ± a2 or

√
a2 − x2. It is sometimes useful to

make the following substitution:

•
√
x2 + a2: Let x = a tan θ.

•
√
x2 − a2: Let x = a sec θ.

•
√
a2 − x2: Let x = a sin θ.
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Example 11.7. Evaluate:
∫

x3√
1− x2

dx

First, we note that the domain of the integrand is (−1, 1).
Let θ = arcsinx. Then x = sin θ, dx = cos θ dθ, and:

√
1− x2 =

√
1− sin2 θ = |cos θ| = cos θ,

since θ = arcsinx ∈ [−π/2, π/2] for all x ∈ (−1, 1).
So, ∫

x3√
1− x2

dx =

∫
sin3 θ

cos θ
cos θ dθ

=

∫
sin3 θ dθ

=

∫
(1− cos2 θ) sin θ dθ

= −
∫

(1− cos2 θ) d(cos θ)

= − cos θ +
1

3
cos3 θ + C

= −
√

1− x2 +
1

3
(1− x2)3/2 + C.

Example 11.8. Evaluate:
∫

1

(9 + x2)2
dx

Let θ = arctan(x/3). Then x = 3 tan θ, dx = 3 sec2 θ dθ, and:

9 + x2 = 9 + 9 tan2 θ = 9 sec2 θ.

So, ∫
1

(9 + x2)2
dx =

∫
1

81 sec4 θ
3 sec2 θ dθ

=

∫
1

27 sec2 θ
dθ

=
1

27

∫
cos2 θ dθ

=
1

27

(
θ

2
+

sin(2θ)

4

)
+ C

=
1

27

(
θ

2
+

2 sin θ cos θ

4

)
+ C

=
1

27

(
θ

2
+

2 tan θ cos2 θ

4

)
+ C
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=
arctan(x/3)

54
+

tan (arctan(x/3)) cos2 (arctan(x/3))

54
+ C

Now,

cos2 (arctan(x/3)) =
1

sec2 (arctan(x/3))

=
1

1 + tan2 (arctan(x/3))

=
1

1 + (x/3)2
=

9

9 + x2

Hence, ∫
1

(9 + x2)2
dx =

arctan(x/3)

54
+

9x

162(9 + x2)
+ C

=
arctan(x/3)

54
+

x

18(9 + x2)
+ C

Example 11.9. Evaluate:
∫ √

x2 − 25

x
dx

Example 11.10. Evaluate:
∫

x

8− 2x− x2
dx.

Example 11.11. Evaluate: ∫
dx

x
√
x2 − 1

First, we note that the domain of the integrand is (−∞,−1) ∪ (1,∞).
Let θ = arccos(1/x).
Then, x = sec θ, dx = sec θ tan θ dθ, and:

√
x2 − 1 =

√
sec2 θ − 1 =

√
tan2 θ = |tan θ| .

Since:

θ = arccos(1/x) ∈

{
[0, π/2) if x > 0,

(π/2, π] if x < 0,

we have:
√
x2 − 1 = |tan θ| =

{
tan θ if x > 1,

− tan θ if x < −1.

More succinctly, we have:
√
x2 − 1 = sign(x) tan θ.

83



Hence, ∫
dx

x
√
x2 − 1

=

∫
sign(x)

sec θ tan θ

sec θ tan θ
dθ

=

∫
sign(x) dθ

= sign(x)θ + C

= sign(x) arccos(1/x) + C

Example 11.12. Evaluate: ∫
x4√

9− x2
dx

11.4 WeBWorK
1. WeBWorK

2. WeBWorK

3. WeBWorK

4. WeBWorK

5. WeBWorK

6. WeBWorK

7. WeBWorK

8. WeBWorK

9. WeBWorK

10. WeBWorK
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MATH 1010DE Week 12

Indefinite Integrals, Reduction Formulas, Partial Fractions

12.1 Reduction Formulas
Let n ∈ N.

Example 12.1. ∫
xnex dx︸ ︷︷ ︸
In

= xnex − n
∫
xn−1ex dx︸ ︷︷ ︸
In−1

.

Example 12.2. For n ≥ 2,∫
cosn x dx =

1

n
cosn−1 x sinx+

n− 1

n

∫
cosn−2 x dx.

Let U = cosn−1 x, dV = cosx dx. Then:

dU = −(n− 1) cosn−2 x sinx dx, V = sinx.

It follows from Section 10.8 () that:∫
U dV = UV −

∫
V dU

= cosn−1 x sinx+ (n− 1)

∫
sin2 x cosn−2 x dx

= cosn−1 x sinx+ (n− 1)

∫
(1− cos2 x) cosn−2 x dx

= cosn−1 x sinx+ (n− 1)

∫
cosn−2 x dx− (n− 1)

∫
cosn x dx
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Hence:

(1 + (n− 1))

∫
cosn x dx

= cosn−1 x sinx+ (n− 1)

∫
cosn−2 x dx.

Dividing both sides of the equation by n, we obtain:∫
cosn x dx =

1

n
cosn−1 x sinx+

n− 1

n

∫
cosn−2 x dx.

Example 12.3. For n ≥ 2,∫
sinn x dx = − 1

n
sinn−1 x cosx+

n− 1

n

∫
sinn−2 x dx.

Example 12.4. For n ≥ 3,∫
secn x dx =

1

n− 1
secn−2 x tanx+

n− 2

n− 1

∫
secn−2 x dx.

Example 12.5. ∫
(lnx)n dx = x(lnx)n − n

∫
(lnx)n−1 dx.

12.2 WeBWorK
1. WeBWorK

2. WeBWorK

3. WeBWorK

12.3 Partial Fractions
Definition 12.6. A rational function

r

s
, where r, s are polynomials, is said to be

proper if:
deg r < deg s.
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By performing long division of polynomials, any rational function
p

q
, where

p, q are polynomials, may be expressed in the form:

p

q
= g +

r

q
,

where g is a polynomial, and
r

q
is a proper rational function. Let

r

s
be a proper

rational function. Factor s as a product of powers of distinct irreducible factors:

s = · · · (x− a)m · · · ( x2 + bx+ c︸ ︷︷ ︸
irreducible i.e. b2−4c<0

)n · · · .

Then:

Fact 12.7. The proper rational function
r

s
may be written as a sum of rational

functions as follows:

r

s
= · · ·

+
A1

x− a
+

A2

(x− a)2
+ · · ·+ Am

(x− a)m
+ · · ·

+
B1x+ C1

x2 + bx+ c
+

B2x+ C2

(x2 + bx+ c)2
+ · · ·+ Bnx+ Cn

(x2 + bx+ c)n

+ · · · ,

where the Ai, Bi, Ci are constants.

Example 12.8.
∫
x3 − x− 2

x2 − 2x
dx

Performing long division for polynomials, we have:∫
(x3 − x− 2)

x2 − 2x
dx =

∫
(x+ 2)dx+

∫
3x− 2

x2 − 2x
dx

=
1

2
x2 + 2x+

∫
3x− 2

x2 − 2x
dx.

To evaluate: ∫
3x− 2

x2 − 2x
dx,

we first observe that the integrand is a proper rational function. Moreover, the
denominator factors as follows:

x2 − 2x = x(x− 2).
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Hence, by Fact 12.7 , we have:

3x− 2

x2 − 2x
=
A

x
+

B

x− 2
,

for some constants A and B. Clearing denominators, we see that the equation
above holds if and only if:

3x− 2 = A(x− 2) +Bx. (∗)

Letting x = 2, we have:
3 · 2− 2 = B · 2,

which implies that B = 2. Similarly, letting x = 0 in equation (∗) gives:

−2 = −2A,

which implies that A = 1. Hence:∫
3x− 2

x2 − 2x
dx =

∫ (
1

x
+

2

x− 2

)
dx

= ln |x|+ 2 ln |x− 2|+ C,

where C represents an arbitrary constant.
We conclude that:∫

(x3 − x− 2)

x2 − 2x
dx =

1

2
x2 + 2x + ln |x| + 2 ln |x− 2| + C.

Example 12.9.
∫

x

(x2 + 4)(x− 3)
dx

First we note that the integrand is a proper rational function.
The quadratic factor x2 + 4 has discriminant 02 − 4 · 4 < 0, hence it is

irreducible.
By Fact 12.7 , we have:

x

(x2 + 4)(x− 3)
=
Ax+B

x2 + 4
+

C

x− 3
,

for some constantsA,B and C. Clearing denominators, the equation above holds
if and only if:

x = (Ax+B)(x− 3) + C(x2 + 4) (∗)

Letting x = 3, we have:
3 = C · 13,
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which implies that C = 3/13.
Letting x = 0, we have:

0 = −3B + 4C,

which implies that B = (4/3)C = 4/13.
Finally, viewing each side of equation (∗) as polynomials and comparing the

coefficients of x2 on each side, we have:

0 = A+ C,

which implies that A = −C = −3/13.
Hence:∫

x

(x2 + 4)(x− 3)
dx

=
1

13

∫
−3x+ 4

x2 + 4
dx+

3

13

∫
1

x− 3
dx

=
1

13

(
−3

2

∫
1

x2 + 4
d(x2 + 4) +

∫
1

(x/2)2 + 1
dx

+3

∫
1

x− 3
dx

)
=

1

13

(
−3

2
ln
∣∣x2 + 4

∣∣+ 2 arctan(x/2) + 3 ln |x− 3|
)

+D,

where D represents an arbitrary constant.

Example 12.10.
∫

x3

(x2 + x+ 1)(x− 3)2
dx

First, we observe that:

x3

(x2 + x+ 1)(x− 3)2

is a proper rational function. Moreover, since the discriminant of x2+x+1 is 12−
4 < 0, this quadratic factor is irreducible. So, there exist constants A,B,C,D
such that:

x3

(x2 + x+ 1)(x− 3)2
=

Ax+B

x2 + x+ 1
+

C

x− 3
+

D

(x− 3)2
.

The equation above holds if and only if:

x3 = (Ax+B)(x− 3)2 + C(x2 + x+ 1)(x− 3)

+D(x2 + x+ 1).
(∗)
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Letting x = 3, we have:
27 = 13D.

So, D = 27/13.
To find A,B and C, we view each side of the equation (∗) as polynomials,

then compare the coefficients of the x3, x2, x and constant terms respectively:

x3 : 1 = A+ C (12.3)
x2 : 0 = −6A+B − 2C + 27/13 (12.4)
x : 0 = 9A− 6B − 2C + 27/13 (12.5)
1 : 0 = 9B − 3C + 27/13 (12.6)

Subtracting equation (12.4) from equation (12.5), we have:

0 = 15A− 7B,

which implies that B = 15A/7. Combining this with equation (12.3), we have:

B = 15(1− C)/7 = 15/7− 15C/7.

It now follows from equation (12.6) that:

0 = 135/7− 135C/7− 3C + 27/13.

Hence:

C =
162

169

B =
15

169

A =
7

169

D =
27

13
.

We have:∫
x3

(x2 + x+ 1)(x− 3)2
dx

=

∫ [
7x+ 15

169 (x2 + x+ 1)
+

162

169 (x− 3)
+

27

13 (x− 3)2

]
dx

=

∫
7x+ 15

169 (x2 + x+ 1)
dx

+
162

169

∫
1

(x− 3)
dx+

27

13

∫
1

(x− 3)2
dx
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To evaluate
∫

7x+15
169(x2+x+1)

dx, we first rewrite the integral as follows:∫
7x+ 15

169 (x2 + x+ 1)
dx =

1

169

∫
7x+ 7/2− 7/2 + 15

x2 + x+ 1
dx

=
1

169


7

2

∫
2x+ 1

x2 + x+ 1
dx︸ ︷︷ ︸∫

1
x2+x+1

d(x2+x+1)

+
23

2

∫
1

(x+ 1/2)2 + 3/4
dx︸ ︷︷ ︸

4
3

∫
1

((2x+1)/
√
3)2+1

dx


=

7

338
ln
∣∣x2 + x+ 1

∣∣+
23 · 2
169 · 3

√
3

2
arctan

(
(2x+ 1)/

√
3
)

+ E

=
7

338
ln
∣∣x2 + x+ 1

∣∣+
23

169
√

3
arctan

(
(2x+ 1)/

√
3
)

+ E,

where E represents an arbitrary constant.
It now follows that:∫

x3

(x2 + x+ 1)(x− 3)2
dx

=
7

338
ln
∣∣x2 + x+ 1

∣∣+
23

169
√

3
arctan

(
(2x+ 1)/

√
3
)

+
162

169
ln |x− 3| − 27

13

1

x− 3
+ E.

Example 12.11.
∫

8x2

x4 + 4
dx

12.4 WeBWorK
1. WeBWorK

2. WeBWorK

3. WeBWorK

4. WeBWorK

5. WeBWorK

6. WeBWorK
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7. WeBWorK

8. WeBWorK

9. WeBWorK

10. WeBWorK

11. WeBWorK

12. WeBWorK

13. WeBWorK

14. WeBWorK

15. WeBWorK

12.5 How Does Partial Fractions Decomposition Work?
This section is optional. You don’t have to study it for Math 1010.

Theorem 12.12 (Unique Factorization of Real Polynomials). Given any polyno-
mial f ∈ R[x], that is:

f = a0 + a1x+ ...+ anx
n, ai ∈ R,

There are distinct irreducible polynomials, p1, p2, . . . , pl in R[x] , of degree at
most 2, such that:

f = pn1
1 p

n2
2 · · · p

nl
l

for some positive integers n1, n2, . . . , nl. Up to ordering of the irreducible factors,
this factorization is unique.

Theorem 12.13 (Bézout’s Identity). If f and g are two irreducible polynomials
in R[x] with no common factors, then there exist a, b ∈ R[x] such that:

af + bg = 1

Suppose we have a rational function p
q
, where p, q ∈ R[x] have no common

factors, and deg p < deg q.
By Unique Factorization of Real Polynomials , there are distinct irreducible

polynomials q1, q2, . . . , ql, of degree at most 2, such that:

q = qn1
1 q

n2
2 · · · q

nl
l ,
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for some positive integers n1, n2, . . . , nl.
Since the polynomial qn1

1 has no common factors with qn2
2 . . . qnl

l , by Bézout’s
Identity there exist polynomials f, g such that:

f · (qn2
2 · · · q

nl
l ) + gqn1

1 = 1.

Hence,

p

q
=
p · 1
q

=
p(fqn2

2 · · · q
nl
l + gqn1

1 )

qn1
1 q

n2
2 · · · q

nl
1

=
pf

qn1
1

+
pg

qn2
2 · · · q

nl
l

Consider now the term:
pf

qn1
1

. By the Divison Algorithm for real polynomials,

we have:
pf = aq1 + r

for some real polynomials a, r such that deg r < deg q1. Hence,

pf

qn1
1

=
aq1 + r

qn1
1

=
a

qn1−1
1

+
r

qn1
1

By the same reasoning, we have:

a

qn1−1
1

=
b

qn1−2
1

+
s

qn1−1
1

for some polynomials b, s such that deg s < deg q1.
Repeating this process, eventually we have:

pf

qn1
1

=
r1
q1

+
r2
q21

+ · · ·+ rn1

qn1
1

+ a1,

where deg ri < deg q1, and a1 is some polynomial.
We now have:

p

g
=
r1
q1

+
r2
q21

+ · · ·+ rn1

qn1
1

+ a1 +
pg

qn2
2 · · · q

nl
l

.

Repeating the process for the term:
pg

qn2
2 · · · q

nl
l

, and then for all subsequent

resulting terms of similar forms, we have:

p

q
=

l∑
k=1

nk∑
j=1

rkj

qjk
+ h, (12.7)
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where deg rkj < deg qk, and h is some polynomial in R[x].
We claim that h = 0.
Multiplying both sides of equation (12.7) by the polynomial q, we have:

p =
l∑

k=1

nk∑
j=1

rkj ·
q

qjk
+ hq (12.8)

Since every qjk in the sum divides q, each q

qjk
is a polynomial. So, the equation

above is an equality between polynomials.
By assumption, deg p < deg q. On the other hand, each term:

rkj ·
q

qjk

has degree strictly less than q, since deg rkj < deg qk.
So, if h 6= 0, then the right-hand side of equation (12.8) has degree deg h +

deg q ≥ deg q > deg p, contradicting the equality of the two sides.
Hence, h = 0. It follows that:

p

q
=

l∑
k=1

nk∑
j=1

rkj

qjk

12.6 t-Substitution
Example 12.14. Evaluate: ∫

1

1 + 2 cosx
dx

Let:
t = tan

x

2
.

(Here, we are assuming that x ∈ (−π, π)).
Then,

x = 2 arctan t,

dx =
2

1 + t2
dt

Moreover,
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by the double-angle formula for the sine function, we have:

sinx = 2 sin
x

2
cos

x

2

= 2
sin x

2

cos x
2

cos2
x

2

=
2 tan x

2

sec2 x
2

=
2t

1 + t2

Similarly, by the double-angle formula for the cosine function, we have:

cosx = 1− 2 sin2 x

2

= 1− 2 tan2 x

2
cos2

x

2

= 1−
2 tan2 x

2

sec2 x
2

= 1− 2t2

1 + t2

=
1− t2

1 + t2

We have: ∫
1

1 + 2 cosx
dx=

∫
1

1 + 2
(
1−t2
1+t2

) 2

1 + t2
dt

=

∫
2

3− t2
dt

=
1√
3

∫ (
1√

3 + t
+

1√
3− t

)
dt

=
1√
3

(
ln
∣∣∣√3 + t

∣∣∣− ln
∣∣∣√3− t

∣∣∣)+ C

=
1√
3

ln

∣∣∣∣∣
√

3 + tan x
2√

3− tan x
2

∣∣∣∣∣+ C,

where C is an arbitrary constant.

Example 12.15. Evaluate: ∫
1

1 + sin x+ cosx
dx
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Let t = tan x
2
. Then:

dx =
2

1 + t2
dt

sinx =
2t

1 + t2

cosx =
1− t2

1 + t2

∫
1

1 + sin x+ cosx
dx =

∫ 2
1+t2

dt

1 + 2t
1+t2

+ 1−t2
1+t2

=

∫
2dt

2 + 2t
=

∫
1

1 + t
dt

= ln |1 + t|+ C

= ln
∣∣∣1 + tan

x

2

∣∣∣+ C

= ln

∣∣∣∣1 +
sinx

1 + cos x

∣∣∣∣+ C,

where C is an arbitrary constant.
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MATH 1010DE Week 13

Definite Integrals

13.1 Motivation
Given a continuous function over a closed interval. We want to approximate the
area of the region bounded by the graph of the function and the x-axis.

One way to do so is by viewing the region roughly as a union of sequence of
rectangles, and then adding up the areas of these rectangles.

IMAGE
5 rectangles.

IMAGE
10 rectangles.

Intuitively, we see that the more (and smaller) rectangles are used, the more
closely their union approximates the region in question.

IMAGE

Definition 13.1. Let n be a positive integer.
Let f : [a, b] −→ R be a continuous function on a closed interval.
Let:

∆x =
b− a
n

.
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The Left Riemann Sum of f over [a, b] associated with n subintervals of equal
lengths is:

LSn(f) =
n−1∑
k=0

f(a+ k∆x)∆x

= ∆x
[
f(a) + f(a+ ∆x) + f(a+ 2∆x) + . . .

· · ·+ f(a+ (n− 1)∆x)
]

Each summand may be thought of as the area of the rectangle whose base is the
subinterval [a + k∆x, a + (k + 1)∆x], and whose height is the value of f at the
left endpoint of the subinterval.

IMAGEy = f(x)f(x)∆xx

Definition 13.2. Let f : [a, b] −→ R be a continuous function on a closed interval.

The definite integral
∫ b

a

f(x) dx of f over [a, b] is equal to the limit as n tends to

infinity of the left Riemann sum defined previously. That is:∫ b

a

f(x) dx = lim
n→∞

LSn(f)

= lim
n→∞

b− a
n

n−1∑
k=0

f

(
a+

k(b− a)

n

)
It is an established theorem that the limit exists if f is continuous.

(In fact: One could define the definite integral in terms of the Right Riemann
Sum or the Midpoint Riemann Sum. All these sums tend to same limit in the case
where f is continuous.) Our eventual goal is to show that if F is an antiderivative
of a continuous function f , then:∫ b

a

f(x) dx = F (x)

∣∣∣∣b
a

:= F (b)− F (a).

• Integration by Substitution

∫ b

a

f(u(x))u′(x) dx =

∫ u(b)

u(a)

f(u) du = F (u(b))− F (u(a))

if F is an antiderivative of f .
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• Integration by Parts

∫ b

a

u(x)v′(x)dx = u(x)v(x)

∣∣∣∣b
a

−
∫ b

a

v(x)u′(x) dx.

• Integration by Trigonometric Substitution

∫ 3

−3

dx√
32 + x2

=

∫ π/4

−π/4
cos θ sec2 θdθ

• Reduction Formulas

∫ π/2

0

cosn x dx =

(
1

n
cosn−1 x sinx

)∣∣∣∣π/2
0

+
n− 1

n

∫ π/2

0

cosn−2 x dx.

Before we prove the main theorem, we first state a couple of preliminary re-
sults.

Fact 13.3. For a continuous function f on [a, b], we have:∫ a

a

f(x) dx = 0.

∫ a

b

f(x) dx = −
∫ b

a

f(x) dx.

Fact 13.4. Let f be a continuous function on an interval I . For all a, b, c ∈ I , we
have: ∫ b

a

f(x) dx+

∫ c

b

f(x) dx =

∫ c

a

f(x) dx.

If f is an odd continuous function, then:
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∫ a

−a
f(x)dx=

∫ 0

−a
f(x)dx+

∫ a

0

f(x)dx

=

∫ 0

−a
−(f(−x))dx+

∫ a

0

f(x)dx

=

∫ t=0

t=a

(f(t))dt︸ ︷︷ ︸
t=−x

+

∫ a

0

f(x)dx

=

∫ a

a

f(x)dx

= 0

If f is an even continuous function, then:∫ a

−a
f(x)dx = 2

∫ a

0

f(x)dx

Claim 13.5. Let f, g be continuous functions on [a, b]. If f(x) ≤ g(x) for all
x ∈ [a, b], then: ∫ b

a

f(x) dx ≤
∫ b

a

g(x) dx.

Example 13.6. Find the area of the region in the xy-plane bounded between the
graph of y = x2 − 2x− 3 and the x-axis over the interval [1, 5].

IMAGE

The geometric area of the region described is equal to:∫ 5

1

∣∣x2 − 2x− 3
∣∣ dx

Consider the sign chart for the values of f(x) = x2 − 2x − 3 = (x + 1)(x − 3)
over the interval [1, 5]:

f(x): − 0 +
x: [1, 3) 3 (3, 5]

Hence,
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∫ 5

1

∣∣x2 − 2x− 3
∣∣ dx

=

∫ 3

1

∣∣x2 − 2x− 3
∣∣ dx+

∫ 5

3

∣∣x2 − 2x− 3
∣∣ dx

=

∫ 3

1

−
(
x2 − 2x− 3

)
dx+

∫ 5

3

(
x2 − 2x− 3

)
dx

= −
(

1

3
x3 − x2 − 3x

)∣∣∣∣3
1

+

(
1

3
x3 − x2 − 3x

)∣∣∣∣5
3

=
16

3
+

32

3
= 16

Theorem 13.7. (Mean Value Theorem for Integrals) Let f be a continuous
function on [a, b]. There exists c ∈ [a, b] such that:

f(c) =
1

b− a

∫ b

a

f(x) dx.

Proof. Since f is continuous on [a, b], by the Extreme Value Theorem it has a
maximum value M and minimum value m on [a, b].

In other words,
m ≤ f(x) ≤M

for all x ∈ [a, b]. Hence:∫ b

a

mdx︸ ︷︷ ︸
m(b−a)

≤
∫ b

a

f(x) dx ≤
∫ b

a

M dx︸ ︷︷ ︸
M(b−a)

.

Dividing each expression by b− a, we have:

m ≤ 1

b− a

∫ b

a

f(x) dx ≤M.

Let x1, x2 be elements in [a, b] such that M = f(x1) and m = f(x2). Since

f is continuous on [a, b], and
1

b− a

∫ b

a

f(x) dx is a number between f(x1) and

f(x2), by the Intermediate Value Theorem there exists c between x1 and x2 such
that:

f(c) =
1

b− a

∫ b

a

f(x) dx.

This c lies in [a, b], since x1, x2 lies in [a, b].
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Theorem 13.8 (Fundamental Theorem of Calculus Part I). Let f be a continuous
function on [a, b]. Define a function F : [a, b] −→ R as follows:

F (x) =

∫ x

a

f(t) dt, x ∈ [a, b].

Then, F is continuous on [a, b] and differentiable on (a, b), with:

F ′(x) = f(x)

for all x ∈ (a, b). Equivalently:

d

dx

∫ x

a

f(t) dt = f(x)

Proof. By definition:

F ′(x) = lim
h→0

F (x+ h)− F (x)

h
.

= lim
h→0

∫ x+h
a

f(t) dt−
∫ x
a
f(t) dt

h
.

= lim
h→0

∫ x+h
x

f(t) dt

h
.

By the Mean Value Theorem for Integrals, there exists ch ∈ [x, x + h] such
that:

f(ch) =

∫ x+h
x

f(t) dt

h
.

Hence:

F ′(x) = lim
h→0

f(ch) = f(x),

since for any h the number ch lies between x and x+ h, and f is continuous.

We leave the proof of the continuity of F on [a, b] as an exercise.

Corollary 13.9. Let f be a continuous function. Let g and h be differentiable
functions. Then:

d

dx

∫ h(x)

g(x)

f(t) dt = f(h(x))h′(x)− f(g(x))g′(x).
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Example 13.10. Evaluate:

d

dx

∫ x3+1

sinx

e−t
2

dt

d

dx

∫ x3+1

sinx

e−t
2

dt = e(−(x
3+1)2)(x3 + 1)′ − e(−(sinx)2)(sinx)′

= e(−(x
3+1)2) · 3x2 − e(−(sinx)2) cosx

Example 13.11. Evaluate:

lim
h→0+

1

ln(1 + h)

∫ 2+h

2

√
t4 + 1 dt

We have:

lim
h→0+

1

ln(1 + h)

∫ 2+h

2

√
t4 + 1 dt = lim

h→0+

∫ 2+h

2

√
t4 + 1 dt

ln(1 + h)
(13.9)

Computing the limits of the numerator and denominator separately, we have:

lim
h→0+

∫ 2+h

2

√
t4 + 1 dt =

∫ 2

2

√
t4 + 1 dt = 0

(because F (h) =
∫ 2+h

2

√
t4 + 1 dt is a continuous function by Fundamental The-

orem of Calculus Part I ), and:

lim
h→0+

ln(1 + h) = ln(1 + 0) = 0

(also because f(h) = ln(1 + h) is a continuous function).
Hence, the limit (13.9) corresponds to the indeterminate form 0

0
.

Taking the limit of the ratio of the derivatives of the numerator and denomina-
tor, we have:

lim
h→0+

d
dh

∫ 2+h

2

√
t4 + 1 dt

d
dh

ln(1 + h)
= lim

h→0+

(√
(2 + h)4 + 1

)
(2 + h)′

1
1+h

= lim
h→0+

(1 + h)
(√

(2 + h)4 + 1
)

=
√

17.
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It now follows from l’Hôpital’s rule that:

lim
h→0+

1

ln(1 + h)

∫ 2+h

2

√
t4 + 1 dt =

√
17.

There is a general formula regarding derviatives of the form:

d

dx

∫ b(x)

a(x)

f(x, t) dt,

the discussion of which is beyond the scope of this course. However, in certain
special cases, the derivative may be found using Corollary 13.9 without much
further effort:

Example 13.12. Find:

d

dx

∫ 3x2

x

sin(x2t)

t
dt, x > 0. (13.10)

Again, we first view x as a constant.
Let:

u = x2t.

So:
t =

u

x2
, dt =

1

x2
du.

Under this change of variable, the integral:∫ t=3x2

t=x

sin(x2t)

t
dt

is equal to: ∫ u=3x4

u=x3

sin(u)

(u/x2)

1

x2
du =

∫ u=3x4

u=x3

sin(u)

u
du

It now follows from Corollary 13.9 that:

d

dx

∫ t=3x2

t=x

sin(x2t)

t
dt =

d

dx

[∫ u=3x4

u=x3

sin(u)

u
du

]
.

=
sin(3x4)

3x4
· 12x3 − sin(x3)

x3
· 3x2

=
4 sin(3x4)

x
− 3 sin(x3)

x
·
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Theorem 13.13 (Fundamental Theorem of Calculus Part II). Let f be a contin-
uous function on [a, b]. Let F be a continuous function on [a, b] which is an an-
tiderivative of f over (a, b). Then:∫ b

a

f(x) dx = F (b)− F (a).

Proof. By the Fundamental Theorem of Calculus Part I, we know that G(x) =∫ x
a
f(t) dt is also an antiderivative of f . By Lagrange’s Mean Value Theorem and

the continuity of F and G on [a, b], for all x ∈ [a, b] we have:

G(x) = F (x) + C

for some constant C.
Since G(a) =

∫ a

a

f(t) dt = 0, we have C = −F (a).

Hence: ∫ b

a

f(t) dt = G(b) = F (b) + C = F (b)− F (a).
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