Math 1010 Week 8

Curve Sketching

8.1 Absolute/Relative (Global/Local) Extrema

Consider a function $f : A \longrightarrow \mathbb{R}$.

- **Definition 8.1.** *If there is an element* $c \in A$ *such that:* $f(c) \leq f(x)$ *for all* $x \in A$, we say that $f(c)$ is the (global/absolute) **minimum** of f.
	- If there is an element $d \in A$ such that: $f(d) \ge f(x)$ for all $x \in A$, we say *that* $f(d)$ *is the (global/absolute)* **maximum** *of* f *.*
- **Definition 8.2.** *If* $f(c) \leq f(x)$ *for all* x *in an open interval containing c, we say that* f *has a* local/relative minimum *at* c*.*
	- If $f(c) \geq f(x)$ for all x in an open interval containing c, we say that f has *a* local/relative maximum *at* c*.*

[IMAGE](https://commons.wikimedia.org/wiki/File:Extrema_example_original.svg#/media/File:Extrema_example_original.svg)

By KSmrq - http://commons.wikimedia.org/wiki/File:Extrema_example.svg , [GFDL 1.2](http://www.gnu.org/licenses/old-licenses/fdl-1.2.html) , [Link](https://commons.wikimedia.org/w/index.php?curid=6870865)

Theorem 8.3 (First Derivative Test). Let $f : A \longrightarrow \mathbb{R}$ be a continuous function. *For* $c \in A$, *if there exists an open interval* (a, b) *containing c such that* $f'(x) < 0$ (in particular it exists) for all $x \in (a, c)$, and $f'(x) > 0$ for all $x \in (c, b)$, then f *has a local minimum at* c*.*

Similarly, if $f'(x) > 0$ *for all* $x \in (a, c)$ *and* $f'(x) < 0$ *for all* $x \in (c, b)$ *, then* f *has a local maximum at* c*.*

Note: In the special case that the domain of f is an open interval (a, b) , if $f'(x)$ 0 for <u>all</u> $x \in (a, c)$, and $f'(x) < 0$ for <u>all</u> $x \in (c, b)$, then f has an absolute maximum at c.

Similarly f has an absolute minimum at c if each of the above inequalities is reversed.

- **Example 8.4.** In [Example 7.6,](https://www.math.cuhk.edu.hk/~pschan/cranach-dev/?xml=https://raw.githubusercontent.com/pschan-gh/math1010/devel/week7.xml&slide=9#item7.6) the function has a local maximum at $x =$ -5 *, and a local minimum at* $x = 1$ *.*
	- *In [Example 7.7,](https://www.math.cuhk.edu.hk/~pschan/cranach-dev/?xml=https://raw.githubusercontent.com/pschan-gh/math1010/devel/week7.xml&slide=10#item7.7) the function has only one local extremum, namely a local minimum at* $x = -1$ *. In fact,* $f(-1) = 0$ *is the absolute minimum of f.*

Exercise 8.5. $f(x) = x^{\frac{1}{3}} - \frac{1}{2}$ 3 $x-\frac{2}{2}$ 3 *for* $x > 0$ *. Show that* $f(x) \leq 0$ *for all* $x > 0$ *. Then, deduce that:*

$$
u^{\frac{1}{3}}v^{\frac{2}{3}} \le \frac{1}{3}u + \frac{2}{3}v
$$

for $u, v > 0$ *.*

8.2 WeBWorK

- 1. [WeBWorK](https://www.math.cuhk.edu.hk/~pschan/cranach-dev/?xml=https://raw.githubusercontent.com/pschan-gh/math1010/devel/week8.xml&slide=6)
- 2. [WeBWorK](https://www.math.cuhk.edu.hk/~pschan/cranach-dev/?xml=https://raw.githubusercontent.com/pschan-gh/math1010/devel/week8.xml&slide=6)
- 3. [WeBWorK](https://www.math.cuhk.edu.hk/~pschan/cranach-dev/?xml=https://raw.githubusercontent.com/pschan-gh/math1010/devel/week8.xml&slide=6)
- 4. [WeBWorK](https://www.math.cuhk.edu.hk/~pschan/cranach-dev/?xml=https://raw.githubusercontent.com/pschan-gh/math1010/devel/week8.xml&slide=6)
- 5. [WeBWorK](https://www.math.cuhk.edu.hk/~pschan/cranach-dev/?xml=https://raw.githubusercontent.com/pschan-gh/math1010/devel/week8.xml&slide=6)
- 6. [WeBWorK](https://www.math.cuhk.edu.hk/~pschan/cranach-dev/?xml=https://raw.githubusercontent.com/pschan-gh/math1010/devel/week8.xml&slide=6)

Theorem 8.6 (Second Derivative Test). *Let* f *be a function twice differentiable at* $c \in \mathbb{R}$, such that $f'(c) = 0$. If:

- $f''(c) > 0$, then f has a local minimum at c.
- $f''(c) < 0$, then f has a local maximum at c.

Proof. Sketch of Proof. Suppose $f''(c) > 0$, by the definition of $f''(c)$ as the derivative of f' at c, we have:

$$
0 < f''(c) = \lim_{h \to 0} \frac{f'(c+h) - f'(c)}{h} = \lim_{h \to 0} \frac{f'(c+h)}{h}.
$$

It follows from the above identity that $f'(c+h)$ is > 0 for sufficiently small positive h, and < 0 for sufficiently small negative h.

Hence there is an open interval (a, b) containing c such that f' is negative on (a, c) and positive on (c, b) . So, f has a local minimum at c by the First Derivative Test.

The case $f''(c) < 0$ may be proved similarly.

Example 8.7. *Consider the function* $f(x) = x^3 + 6x^2 - 15x + 7$ *in [Example 7.6,](https://www.math.cuhk.edu.hk/~pschan/cranach-dev/?xml=https://raw.githubusercontent.com/pschan-gh/math1010/devel/week7.xml&slide=9#item7.6) we have:*

$$
f''(x) = 6x + 12
$$

The function f has a two stationary points $c = -5, 1$ where $f'(c) = 0$. *Since:*

 $f''(-5) = -18$, $f''(1) = 18$,

by the [Second Derivative Test](https://www.math.cuhk.edu.hk/~pschan/cranach-dev/?xml=https://raw.githubusercontent.com/pschan-gh/math1010/devel/week8.xml&slide=7#item8.6) f(−5) *is a local maximum, and* f(1) *is a local minimum. (This corroborates the conclusions of the [First Derivative Test](https://www.math.cuhk.edu.hk/~pschan/cranach-dev/?xml=https://raw.githubusercontent.com/pschan-gh/math1010/devel/week8.xml&slide=4#item8.3) applied to the same function, see [Example 8.4.](https://www.math.cuhk.edu.hk/~pschan/cranach-dev/?xml=https://raw.githubusercontent.com/pschan-gh/math1010/devel/week8.xml&slide=4#item8.4))*

Example 8.8. *Consider* $g(x) = x^4$ *. Then,* $g'(x) = 4x^3$ *, which implies that* $c = 0$ is the only point where $g'(c) = 0$.

The second derivative of g is $g''(x) = 12x^2$ *. Hence,* $g''(c) = g''(0) = 0$ *.*

In this case, no conclusion can be drawn from the [Second Derivative Test,](https://www.math.cuhk.edu.hk/~pschan/cranach-dev/?xml=https://raw.githubusercontent.com/pschan-gh/math1010/devel/week8.xml&slide=7#item8.6) regarding whether g(0) *is a local minimum, maximum, or neither.*

However, one can still apply the [First Derivative Test](https://www.math.cuhk.edu.hk/~pschan/cranach-dev/?xml=https://raw.githubusercontent.com/pschan-gh/math1010/devel/week8.xml&slide=4#item8.3) to conclude that $f(0)$ = 0 *is a local minimum.*

8.3 Concavity

Let f be a twice differentiable function. If f'' is positive (resp. negative) on an open interval (a, b) , then the graph of f over (a, b) is **concave up** (resp. **down**). This is due to the fact that f'' being positive (resp. negative) corresponds to f' being increasing (resp. decreasing).

[IMAGE](https://commons.wikimedia.org/wiki/File:Animated_illustration_of_inflection_point.gif#/media/File:Animated_illustration_of_inflection_point.gif)

By dino -

http://en.wikipedia.org/wiki/File:Animated_illustration_of_inflection_point.gif Public Domain, [Link](https://commons.wikimedia.org/w/index.php?curid=9704293)

A point on the graph of f where the concavity changes is called an **inflection point**. It corresponds to a point in the domain of f where f'' changes sign.

Example 8.9. *Sketch the graph of:*

$$
f(x) = \frac{x^2 + x - 2}{x^2}
$$

by first finding the following information about f*:*

1. Domain.

$$
\{x \in \mathbb{R} : x \neq 0\} = (-\infty, 0) \cup (0, \infty)
$$

2. x-intercepts (if sufficiently easy to find), and y-intercept. $f(x) = 0$ if and *only if* $x \neq 0$ *and* $x^2 + x - 2 = (x - 1)(x + 2) = 0$ *. Hence, the x*-intercepts *are:*

 $x = 1, -2.$

In general, the y*-intercept of the graph of a function is the value of the function at* $x = 0$ *. In this case,* 0 *is not in the domain of* f, hence the graph of f *has no* y*-intercept.*

3. Asymptotes (Horizontal, Vertical, Oblique)

$$
\lim_{x \to \infty} f(x) = \lim_{x \to -\infty} f(x) = 1.
$$

Hence, the graph of f has one horizontal asymptote: $y = 1$ *. The value* $f(x)$ *is defined for all* $x \neq 0$ *. Hence, f, being a rational function, is continuous at all* $x \neq 0$ *. So, there are no vertical asymptotes at* $x \neq 0$ *. Near* $x = 0$ *, we have:*

$$
\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{+}} f(x) = -\infty.
$$

Hence, the graph of f has a vertical asymptote at $x = 0$ *. Since* $f(x)$ *approaches* 1 *as x approaches* $\pm \infty$ *, the graph of f has no oblique asymptote.*

4. Intervals where f *is increasing/decreasing.*

$$
f'(x) = \frac{x^2(2x+1) - (x^2 + x - 2)2x}{(x^2)^2}
$$

$$
= \frac{x^2(2x+1) - (x^2 + x - 2)2x}{(x^2)^2}
$$

$$
= \frac{1}{x^3}(4-x)
$$

Hence, the points c *where* f' *possibly changes sign are* $c = 0, 4$ *.*

$\dot{=} f(x).$		
$f'(x)$.		
x:	$-\infty, 0$	$4, \infty$

It follows from the sign chart that f *is increasing on* (0, 4]*, and decreasing on* $(-\infty, 0)$ *and* $[4, \infty)$ *.*

5. "Turning Points" on the graph of f *(i.e. points corresponding to local extrema).*

It follows from the sign chart above that f *as a local maximum at* $x = 4$ *. The corresponding point on the graph is* $(4, f(4)) = (4, 9/8)$ *.*

6. Intervals where f *is concave up/down.*

The second derivative of f *is:*

$$
f''(x) = \frac{1}{x^4} (2x - 12)
$$

The points where f'' possibly changes sign are points p where $f''(p) = 0$, or where $f''(p)$ *is undefined. In this case, there are two such point:* $p = 0, 6$ *.*

$y = f(x)$:			
$f''(x)$:			
	$-\infty,0)$	(0,6)	$(6,\infty)$

It follows from this sign chart that f *is concave up on* $(6, \infty)$ *, and concave down on* $(-\infty, 0)$ *and* $(0, 6)$ *.*

7. Inflection points on the graph of f. It follows from the sign chart for f" that $(6, f(6)) = (6, 10/9)$ *is the only reflection point on the graph of f.*

Graph

$$
y = \frac{x^2 + x - 2}{x^2}
$$

Example 8.10. *Following the guidelines of the previous example, sketch the graph of:*

1. $f(x) = |x + 1| (3 - x)$

2.
$$
f(x) = x + \frac{1}{|x|}
$$

Solution. *1. Domain:* \mathbb{R} *. x-intercepts:* $x = -1, 3$ *. y-intercept:* $y = f(0) = 3$ *. Asymptotes: None.*

$$
f'(x) = \begin{cases} 2x - 2 & x < -1; \\ \text{undefined} & x = -1; \\ -2x + 2 & x > -1. \end{cases}
$$

Critical points: $c = -1, 1$.

$$
f''(x) = \begin{cases} 2 & x < -1; \\ \text{undefined} & x = -1; \\ -2 & x > -1. \end{cases}
$$

Inflection point: $p = -1$ *.*

2. In general, if one can rewrite a function f *(e.g. using long division if* f *is a rational function) in the form:*

$$
f(x) = mx + b + g(x),
$$

 $\textit{such that } \lim_{x \to \pm \infty} g(x) = 0, \textit{ and } m, b \textit{ are constants, then one can readily}$ *conclude that* $y = mx + b$ *is an asymptote for the graph of f. If* $m \neq 0$ *, we call* $y = mx + b$ *an oblique asymptote. If* $m = 0$ *, then* $y = b$ *is a horizontal asymptote. In this example, since* $\lim_{x\to\pm\infty}$ 1 $|x|$ $= 0$, the graph of $f(x) = x + \frac{1}{x}$ $|x|$ *has an oblique asymptote:* $y = x$ *. We leave the rest of the calculations as an exercise. Hint :*

$$
f(x) = \begin{cases} x - \frac{1}{x} & x < 0; \\ x + \frac{1}{x} & x > 0. \end{cases}
$$

The resulting graph is as follows:

Example 8.11. Consider the function $f(x) = \frac{5x^2+2}{x+1}$. We have:

$$
f(x) = 5x - 5 + \frac{7}{x+1}
$$

Since $\lim_{x\to\pm\infty} \frac{7}{x+1} = 0$, the graph of f approaches the line $y = 5x - 5$ as x *approaches* ±∞*.*

We conclude that $y = 5x - 5$ *is an oblique asymptote for the graph of f.*

In general, if the graph of f approaches the line correpsonding to $l(x)$ = $mx + b$, as x tends to $\pm \infty$, we have:

$$
m = \lim_{x \to \pm \infty} \frac{f(x)}{x}.
$$

and

$$
b = \lim_{x \to \pm \infty} (f(x) - mx).
$$

Example 8.12. *Let* $g(x) = \sqrt{x^2 + 1} + 4$. Exercise.

$$
\lim_{x \to \infty} \frac{f(x)}{x} = 1.
$$

This suggests that $y = f(x)$ *approaches* $y = x + b$ *as* $x \rightarrow \infty$ *, where:* Exercise.

$$
b = \lim_{x \to \pm \infty} (f(x) - 1 \cdot x) = 4.
$$

Hence, $y = f(x)$ *approaches* $y = x + 4$ *as* x *tends to* ∞ *. Similary, as x tends to* $-\infty$ *, we have:* Exercise. $f(x)$

$$
m = \lim_{x \to -\infty} \frac{f(x)}{x} = -1.
$$

$$
b = \lim_{x \to \pm -\infty} (f(x) - 1 \cdot x) = 4.
$$

So, $y = f(x)$ *approaches* $y = -x + 4$ *as* x *tends to* $-\infty$ *. We conclude that the graph of* f *has two oblique asymptotes:*

$$
y = x + 4,
$$

$$
y = -x + 4.
$$