Math 1010 Week 7

Mean Value Theorem

Theorem 7.1 (Extreme Value Theorem). If f is a <u>continuous</u> function defined on a <u>closed</u> interval [a, b], then it attains both a maximum value and a minimum value on [a, b].

7.1 The Mean Value Theorem

Theorem 7.2 (Rolle's Theorem). Let $f : [a, b] \longrightarrow \mathbb{R}$ be a function which is continuous on [a, b] and differentiable on (a, b) (i.e. f'(x) exists for all $x \in (a, b)$). If f(a) = f(b), then there exists $c \in (a, b)$ such that f'(c) = 0.

IMAGE

Proof. Sketch of Proof. First, it follows from the Extreme Value Theorem that f has an absolute maximum or minimum at a point c in (a, b). It may then be shown that:

$$f'(c) = \lim_{h \to 0} \frac{f(c+h) - f(c)}{h} = 0,$$

using that fact that if f(c) is an absolute extremum, then $\frac{f(c+h) - f(c)}{h}$ is both ≤ 0 and ≥ 0 .

Theorem 7.3 (Mean Value Theorem MVT). (*Also known as* Lagrange's Mean Value Theorem)

If a function $f : [a, b] \longrightarrow \mathbb{R}$ is continuous on [a, b] and differentiable on (a, b), then there exists $c \in (a, b)$ such that:

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

IMAGE

Proof. Let f be a function which satisfies the conditions of the theorem. Define a function $g : [a, b] \longrightarrow \mathbb{R}$ as follows:

$$g(x) = f(x) - \left[\left(\frac{f(b) - f(a)}{b - a}\right)(x - a) + f(a)\right], \quad x \in [a, b].$$

(Intuitively, g is obtained from f by subtracting from f the line segment joining (a, f(a)) and (b, f(b)).) Observe that:

$$g(a) = g(b) = 0,$$

so the function g satisfies the conditions of Rolle's Theorem. Hence, there exists $c \in (a, b)$ such that:

$$0 = g'(c) = f'(c) - \frac{f(b) - f(a)}{b - a},$$

which implies that $f'(c) = \frac{f(b) - f(a)}{b - a}$.

7.2 WeBWorK

- 1. WeBWorK
- 2. WeBWorK
- 3. WeBWorK

7.3 Applications of the Mean Value Theorem

Theorem 7.4. Let f be a differentiable function on an open interval (a, b). If f'(x) = 0 for all $x \in (a, b)$, then f is constant on (a, b).

Proof. Exercise. For any $x_1, x_2 \in (a, b)$, show that the difference $f(x_2) - f(x_1)$ is equal to 0.

Theorem 7.5. Let f be a differentiable function on an open interval (a, b). If f'(x) > 0 (resp. f'(x) < 0) for all $x \in (a, b)$, then f is strictly increasing (resp. strictly decreasing) on (a, b).

Remark: If f is moreover continuous on [a, b], then f is increasing (resp. decreasing) on [a, b] if f' is positive (resp. negative) on (a, b).

Proof. We will prove the case f'(x) > 0.

Suppose f'(x) > 0 for all $x \in (a, b)$. Given any $x_1, x_2 \in (a, b)$, such that $x_1 < x_2$, by the MVT there exists $c \in (x_1, x_2)$ such that

$$f'(c) = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

By the condition f'(x) > 0 for all $x \in (a, b)$, we have f'(c) > 0. Also, $x_2 - x_1 > 0$. Hence:

$$f(x_2) - f(x_1) = f'(c) \cdot (x_2 - x_1) > 0$$

This shows that f is increasing on (a, b).

Example 7.6. Find the intervals where the function $f(x) = x^3 + 6x^2 - 15x + 7$ is increasing/decreasing.

Solution. *We apply Theorem 7.5.*

First, we find:

$$f'(x) = 3x^2 + 12x - 15$$

Observe that f' is defined and continuous everywhere. Hence, the intervals where f' is positive/negative are separated by points c where f'(c) = 0. (Such points are called stationary points of f). Setting:

$$f'(c) = 3c^{2} + 12c - 15 = 3(c^{2} + 4c - 5) = 3(c + 5)(c - 1) = 0,$$

we see that the points where f' possibly changes sign are:

$$c = -5, 1$$

Consider now the sign chart:

<i>f</i> :	7		\searrow		7
f'(x):	+	0	—	0	+
<i>x</i> :	$(-\infty, -5)$	-5	(-5,1)	1	$(1,\infty)$

It now follows from Theorem 7.5 and the continuity of f that:

- *f* is increasing on the intervals $(-\infty, -5]$ and $[1, \infty)$.
- f is decreasing on the interval [-5, 1].

Example 7.7. Let:

$$f(x) = \begin{cases} (x+1)^2, & x < 0; \\ x+1, & x \ge 0. \end{cases}$$

Find the intervals where the function f is increasing/decreasing.

Solution. *We carry out the same steps as in the previous example. We leave it as an exercise to show that:*

$$f'(x) = \begin{cases} 2x + 2, & x < 0; \\ undefined, & x = 0; \\ 1, & x > 0. \end{cases}$$

Note that f' is not defined everywhere. In this case, the points where f' possibly changes sign are points c where:

f'(c) = 0 or f'(c) is undefined.

Such points are called the **critical points** of f. (Note that the set of stationary points is a subset of critical points). Constructing a sign chart as in the previous example, we have:

f:	\searrow		\nearrow		\nearrow
f'(x):	_	0	+	undefined	+
<i>x</i> :	$(-\infty,-1)$	-1	(-1,0)	0	$(0,\infty)$

Hence, by Theorem 7.5, f is decreasing on:

$$(-\infty, -1]$$

and increasing on both [-1,0] and $[0,\infty)$. Since f is continuous at x = 0, we conclude that f is increasing on:

$$[-1,\infty).$$

Exercise 7.8. Use the mean value theorem to prove that for x > 0,

$$\frac{x}{1+x} < \ln(1+x) < x.$$

Hence, deduce that for x > 0*,*

$$\frac{1}{1+x} < \ln\left(1+\frac{1}{x}\right) < \frac{1}{x} \; .$$

Solution. *We first show that:*

$$\ln\left(1+x\right) < x \; .$$

Consider the function:

$$f(x) = \ln(1+x) - x$$
.

Then, f(0) = 0, and $f'(x) = \frac{-x}{1+x}$. Hence, f'(x) < 0 for all x > 0. For any x > 0, by the Mean Value Theorem we have:

$$\frac{f(x) - f(0)}{x - 0} = f'(c)$$

for some $c \in (0, x)$. Since c > 0, we have f'(c) < 0, which implies that:

$$\frac{f(x) - f(0)}{x - 0} < 0.$$

Since x > 0, we conclude that $\ln(1 + x) - x = f(x) = f(x) - f(0) < 0$. We conclude that:

 $\ln(1+x) < x,$

for all x > 0.

To show that $\frac{x}{1+x} < \ln(1+x)$, we proceed similarly. Consider:

$$g(x) = \ln(1+x) - \frac{x}{1+x}.$$

Then, g(0) = 0, *and*:

$$g'(x) = \frac{1}{1+x} - \frac{(1+x)1 - x(1)}{(1+x)^2}$$
$$= \frac{x}{(1+x)^2}$$
$$> 0$$

for all x > 0.

Hence, for all x > 0*, by the Mean Value Theorem we have:*

$$\frac{g(x) - g(0)}{x - 0} = g'(c) > 0,$$

where c is some element which lies in (0, x).

This shows that $\ln(1+x) - \frac{x}{1+x} = g(x) > 0$. Hence,

$$\ln(1+x) > \frac{x}{1+x}$$

for x > 0.

Finally, for all
$$t > 0$$
, we have $\frac{1}{t} > 0$. Applying the inequality:

$$\frac{x}{1+x} < \ln(1+x) < x$$

to $x = \frac{1}{t}$, we have:

$$\frac{1/t}{1+1/t} < \ln\left(1+\frac{1}{t}\right) < \frac{1}{t},$$

which is equivalent to:

$$\frac{1}{t+1} < \ln\left(1+\frac{1}{t}\right) < \frac{1}{t}.$$