Math 1010 Week 7

Mean Value Theorem

Theorem 7.1 (Extreme Value Theorem). *If* f *is a continuous function defined on a closed interval* [a, b]*, then it attains both a maximum value and a minimum value on* $[a, b]$.

7.1 The Mean Value Theorem

Theorem 7.2 (Rolle's Theorem). Let $f : [a, b] \longrightarrow \mathbb{R}$ be a function which is *continuous on* $[a, b]$ *and differentiable on* (a, b) *(i.e. f'* (x) *exists for all* $x \in (a, b)$ *). If* $f(a) = f(b)$ *, then there exists* $c \in (a, b)$ *such that* $f'(c) = 0$ *.*

[IMAGE](https://commons.wikimedia.org/wiki/File%3ARolle)

Proof. Sketch of Proof. First, it follows from the [Extreme Value Theorem](https://www.math.cuhk.edu.hk/~pschan/cranach-dev/?xml=https://raw.githubusercontent.com/pschan-gh/math1010/devel/week4.xml&slide=16#item4.17) that f has an absolute maximum or minimum at a point c in (a, b) . It may then be shown that:

$$
f'(c) = \lim_{h \to 0} \frac{f(c+h) - f(c)}{h} = 0,
$$

using that fact that if $f(c)$ is an absolute extremum, then $\frac{f(c+h) - f(c)}{h}$ is both ≤ 0 and ≥ 0 . \Box

Theorem 7.3 (Mean Value Theorem MVT). *(Also known as* Lagrange's Mean Value Theorem*)*

If a function $f : [a, b] \longrightarrow \mathbb{R}$ *is continuous on* $[a, b]$ *and differentiable on* (a, b) *, then there exists* $c \in (a, b)$ *such that:*

$$
f'(c) = \frac{f(b) - f(a)}{b - a}
$$

[IMAGE](https://commons.wikimedia.org/wiki/File%3AMvt2.svg)

Proof. Let f be a function which satisfies the conditions of the theorem. Define a function $g : [a, b] \longrightarrow \mathbb{R}$ as follows:

$$
g(x) = f(x) - \left[\left(\frac{f(b) - f(a)}{b - a} \right) (x - a) + f(a) \right], \quad x \in [a, b].
$$

(Intuitively, q is obtained from f by subtracting from f the line segment joining $(a, f(a))$ and $(b, f(b))$.) Observe that:

$$
g(a) = g(b) = 0,
$$

so the function q satisfies the conditions of Rolle's Theorem. Hence, there exists $c \in (a, b)$ such that:

$$
0 = g'(c) = f'(c) - \frac{f(b) - f(a)}{b - a},
$$

which implies that $f'(c) = \frac{f(b) - f(a)}{b}$ $\frac{f(x)}{b-a}$.

7.2 WeBWorK

- 1. [WeBWorK](https://www.math.cuhk.edu.hk/~pschan/cranach-dev/?xml=https://raw.githubusercontent.com/pschan-gh/math1010/devel/week7.xml&slide=6)
- 2. [WeBWorK](https://www.math.cuhk.edu.hk/~pschan/cranach-dev/?xml=https://raw.githubusercontent.com/pschan-gh/math1010/devel/week7.xml&slide=6)
- 3. [WeBWorK](https://www.math.cuhk.edu.hk/~pschan/cranach-dev/?xml=https://raw.githubusercontent.com/pschan-gh/math1010/devel/week7.xml&slide=6)

7.3 Applications of the Mean Value Theorem

Theorem 7.4. Let f be a differentiable function on an open interval (a, b) . If $f'(x) = 0$ for all $x \in (a, b)$, then f is constant on (a, b) .

Proof. Exercise. For any $x_1, x_2 \in (a, b)$, show that the difference $f(x_2) - f(x_1)$ is equal to 0. \Box

Theorem 7.5. *Let* f *be a differentiable function on an open interval* (a, b)*. If* $f'(x) > 0$ (resp. $f'(x) < 0$) for all $x \in (a, b)$, then f is **strictly increasing** (resp. strictly decreasing*) on* (a, b)*.*

Remark: *If* f *is moreover continuous on* [a, b]*, then* f *is increasing (resp.* decreasing) on $[a, b]$ if f' is positive (resp. negative) on (a, b) .

 \Box

Proof. We will prove the case $f'(x) > 0$.

Suppose $f'(x) > 0$ for all $x \in (a, b)$. Given any $x_1, x_2 \in (a, b)$, such that $x_1 < x_2$, by the MVT there exists $c \in (x_1, x_2)$ such that

$$
f'(c) = \frac{f(x_2) - f(x_1)}{x_2 - x_1}.
$$

By the condition $f'(x) > 0$ for all $x \in (a, b)$, we have $f'(c) > 0$. Also, $x_2 - x_1 >$ 0. Hence:

$$
f(x_2) - f(x_1) = f'(c) \cdot (x_2 - x_1) > 0.
$$

This shows that f is increasing on (a, b) .

Example 7.6. Find the intervals where the function $f(x) = x^3 + 6x^2 - 15x + 7$ *is increasing/decreasing.*

Solution. *We apply [Theorem 7.5.](https://www.math.cuhk.edu.hk/~pschan/cranach-dev/?xml=https://raw.githubusercontent.com/pschan-gh/math1010/devel/week7.xml&slide=8#item7.5) First, we find:*

$$
f'(x) = 3x^2 + 12x - 15
$$

Observe that f' is defined and continuous everywhere. Hence, the intervals where f' is positive/negative are separated by points c where $f'(c) = 0$. (Such points are *called* stationary points *of* f*). Setting:*

$$
f'(c) = 3c2 + 12c - 15 = 3(c2 + 4c - 5) = 3(c + 5)(c - 1) = 0,
$$

we see that the points where f ⁰ *possibly changes sign are:*

$$
c = -5, 1
$$

Consider now the sign chart*:*

It now follows from [Theorem 7.5](https://www.math.cuhk.edu.hk/~pschan/cranach-dev/?xml=https://raw.githubusercontent.com/pschan-gh/math1010/devel/week7.xml&slide=8#item7.5) and the continuity of f *that:*

- f *is increasing on the intervals* $(-\infty, -5]$ *and* $[1, \infty)$ *.*
- f *is decreasing on the interval* [−5, 1]*.*

 \Box

Example 7.7. *Let:*

$$
f(x) = \begin{cases} (x+1)^2, & x < 0; \\ x+1, & x \ge 0. \end{cases}
$$

Find the intervals where the function f *is increasing/decreasing.*

Solution. *We carry out the same steps as in the previous example. We leave it as an exercise to show that:*

$$
f'(x) = \begin{cases} 2x + 2, & x < 0; \\ \text{undefined}, & x = 0; \\ 1, & x > 0. \end{cases}
$$

Note that f' *is not defined everywhere. In this case, the points where* f' *possibly changes sign are points* c *where:*

 $f'(c) = 0$ *or* $f'(c)$ *is undefined.*

Such points are called the critical points *of* f*. (Note that the set of stationary points is a subset of critical points). Constructing a sign chart as in the previous example, we have:*

Hence, by [Theorem 7.5,](https://www.math.cuhk.edu.hk/~pschan/cranach-dev/?xml=https://raw.githubusercontent.com/pschan-gh/math1010/devel/week7.xml&slide=8#item7.5) f *is decreasing on:*

$$
(-\infty, -1],
$$

and increasing on both $[-1, 0]$ *and* $[0, \infty)$ *. Since* f *is continuous at* $x = 0$ *, we conclude that* f *is increasing on:*

$$
[-1,\infty).
$$

Exercise 7.8. *Use the mean value theorem to prove that for* $x > 0$ *,*

$$
\frac{x}{1+x} < \ln(1+x) < x.
$$

Hence, deduce that for $x > 0$ *,*

$$
\frac{1}{1+x} < \ln\left(1+\frac{1}{x}\right) < \frac{1}{x} \, .
$$

Solution. *We first show that:*

$$
\ln(1+x) < x \; .
$$

Consider the function:

$$
f(x) = \ln(1+x) - x.
$$

Then, $f(0) = 0$ *, and* $f'(x) = \frac{-x}{1+x}$ $1 + x$ *. Hence,* $f'(x) < 0$ *for all* $x > 0$ *. For any* x > 0*, by the Mean Value Theorem we have:*

$$
\frac{f(x) - f(0)}{x - 0} = f'(c)
$$

for some $c \in (0, x)$ *. Since* $c > 0$ *, we have* $f'(c) < 0$ *, which implies that:*

$$
\frac{f(x) - f(0)}{x - 0} < 0.
$$

Since $x > 0$ *, we conclude that* $ln(1 + x) - x = f(x) = f(x) - f(0) < 0$ *. We conclude that:*

 $\ln(1+x) < x,$

for all $x > 0$ *.*

To show that $\frac{x}{1+x} < \ln(1+x)$ *, we proceed similarly. Consider:* \boldsymbol{x}

$$
g(x) = \ln(1+x) - \frac{x}{1+x}.
$$

Then, $g(0) = 0$ *, and:*

$$
g'(x) = \frac{1}{1+x} - \frac{(1+x)1 - x(1)}{(1+x)^2}
$$

$$
= \frac{x}{(1+x)^2}
$$

$$
> 0
$$

for all $x > 0$ *.*

Hence, for all x > 0*, by the Mean Value Theorem we have:*

$$
\frac{g(x) - g(0)}{x - 0} = g'(c) > 0,
$$

where c is some element which lies in $(0, x)$ *.*

This shows that $ln(1+x) - \frac{x}{1+x} = g(x) > 0$ *. Hence,*

$$
\ln(1+x) > \frac{x}{1+x}
$$

for $x > 0$ *.*

Finally, for all $t > 0$ *, we have* $\frac{1}{t} > 0$ *. Applying the inequality:*

$$
\frac{x}{1+x} < \ln(1+x) < x
$$

to $x = \frac{1}{t}$ $\frac{1}{t}$, we have:

$$
\frac{1/t}{1+1/t} < \ln\left(1+\frac{1}{t}\right) < \frac{1}{t},
$$

which is equivalent to:

$$
\frac{1}{t+1} < \ln\left(1 + \frac{1}{t}\right) < \frac{1}{t}.
$$