Math 1010 Week 4

Limits, Continuity

4.1 More Limit Identities

Example 4.1. Find:

• $\lim_{x \to 0^+} \sin\left(\frac{1}{x}\right)$ • $\lim_{x \to 0^+} x \sin\left(\frac{1}{x}\right)$

Definition 4.2. *For each* $x \in \mathbb{R}$ *, we let:*

$$e^x = \sum_{k=0}^{\infty} \frac{x^k}{k!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

It is known that:

$$e^x = \lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n.$$

Theorem 4.3.

$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = \lim_{x \to 0} (1 + x)^{\frac{1}{x}} = e^{-\frac{1}{x}}$$

Corollary 4.4.

$$\lim_{x \to \infty} \left(1 - \frac{1}{x} \right)^x = \lim_{x \to 0} (1 - x)^{\frac{1}{x}} = \frac{1}{e}$$

For all $a \in \mathbb{R}$,

$$\lim_{x \to \infty} \left(1 + \frac{a}{x} \right)^x = e^a$$

Exercise 4.5. Find:

$$\lim_{x \to \infty} \left(\frac{x+1}{x-1}\right)^x$$

Theorem 4.6. For all $n \in \{1, 2, 3, ...\}$, we have:

$$\lim_{x \to \infty} \frac{x^n}{e^x} = 0.$$

Corollary 4.7. *For all* $n \in \{1, 2, 3, ...\}$ *, and* b > 1*, we have:*

$$\lim_{x \to \infty} \frac{x^n}{b^x} = 0.$$

Fact 4.8.

$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1$$

From this may be further deduced that:

$$\lim_{t \to 0} \frac{e^t - 1}{t} = 1,$$

by applying a change of variable:

 $x = e^t - 1.$

4.2 Continuity

Definition 4.9. A function $f : A \longrightarrow \mathbb{R}$ is said to be continuous at $c \in A$ if:

$$\lim_{x \to c} f(x) = f(c).$$

A function is said to be **continuous** if it is continuous at every point in its domain.

Should c be an endpoint in the domain of f, the continuity of f at c is defined in terms of a one-sided limit. That is, right limit if c is a left endpoint, and left limit if c is a right endpoint. Hence, the function:

$$f(x) = \sqrt{x}$$

is continuous at x = 0, since $Domain(f) = [0, \infty)$, and:

$$\lim_{x \to 0^+} f(x) = 0 = f(0)$$

The following "elementary functions" are continuous at every element in their domains:

$$f(x) = x, \frac{1}{x}, \sin x, \cos x, \tan x, e^x, \ln x, \arcsin x, \arccos x, \arctan x$$

Due to the laws of sum/difference/product/quotient for limits, the sum/difference/product/quotient of continuous functions is also continous.

In particular, polynomials and rational functions are all continuous on their domains.

Theorem 4.10. For functions g, f with the property that $\lim_{x\to a} g(x)$ exists and f is continuous at $\lim_{x\to a} g(x)$, we have:

$$\lim_{x \to a} f(g(x)) = f\left(\lim_{x \to a} g(x)\right).$$

Example 4.11. *It follows from this theorem that:*

•

$$\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1$$

It also follows from the previous theorem that any composite of continuous functions is continuous.

Example 4.12. The following functions are all continuous, since they are the sums, differences, products, quotients, or composites of other continuous functions:

$$f(x) = \frac{e^{\cos(\frac{1}{x})}}{x^7 - 9x^2 + 23}$$
$$g(x) = \frac{1}{\arctan x} - \sqrt[3]{\log_5(2^x + 1)}$$
$$h(x) = \sin\left(x^{-3} + \left(\cos\left(e^{x^2} + 1\right)\right)\right)$$

Example 4.13. *The following functions are continuous at every point on the real line:*

$$g(x) = \begin{cases} \frac{\sin x}{x}, & x \neq 0; \\ 1, & x = 0; \end{cases}$$

$$f(x) = \begin{cases} x^2 \cos\left(\frac{1}{e^x - 1}\right), & x \neq 0; \\ 0, & x = 0; \end{cases}$$

Exercise 4.14. Let $f : \mathbb{R} \to \mathbb{R}$ be a function that satisfies:

- f(x+y) = f(x)f(y) for all $x, y \in \mathbb{R}$;
- f(x) is continuous at x = 0 and $f(0) \neq 0$.
- *1. Show that* f(0) = 1*.*
- 2. Show that f(x) is continuous on \mathbb{R} .

4.2.1 WeBWorK

- 1. WeBWorK
- 2. WeBWorK
- 3. WeBWorK
- 4. WeBWorK

4.2.2 Further Properties of Continuous Functions

Theorem 4.15 (Intermediate Value Theorem IVT). If $f : [a, b] \longrightarrow \mathbb{R}$ is continuous, then f attains every value between f(a) and f(b). In other words, for any $y \in \mathbb{R}$ between the values of f(a) and f(b), there exists $c \in [a, b]$ such that f(c) = y.

Exercise 4.16. • Show that $f(x) = x^5 + x^2 - 10 = 0$ has a real root between x = 1 and x = 2.

• Show that the range of $f(x) = e^x - \sqrt{x}$ contains $[1, \infty)$.

Theorem 4.17 (Extreme Value Theorem). If f is a <u>continuous</u> function defined on a <u>closed</u> interval [a, b], then it attains both a maximum value and a minimum value on [a, b].